Part 1

THE THEORETICAL PROBLEM



Chapter 2. A Ray Approximation Theory for Multiple Modelling and Suppression

In this chapter we intend to solve the slanted forward and inverse
problems within the scope of the Noah approximation as defined by
Riley [17]. That is, for a two-dimensional layered earth, where
diffractions, transmission effects and intrabed multiples are absent.
The terms "forward" and "inverse" seem to derive from the fact that
reflection seismology can be considered as a filter problem, with the
input being the signal from some acoustic source at or near the earth's
surface. The filter is the earth itself and the output, the recorded
seismogram (Figure 2.1). Denoting B to be the input signal, E
to be the impulse response of the earth and R the recorded seismogram,
we can identify two major problems, which are: 1) the forward problemn,
given B and E , find R ; and 2) the inverse problem, given B and
R, find E . In terms of multiple reflections, the forward problem
allows their modelling, while the inverse, their suppression. However,

we will discuss the problem as a wave propagation phenomenon.
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Figure 2.1. Reflection seismology as a filtering process. If
we call E the earth's impulse response, then given the shot
waveform B , the reflection seismogram R can be computed as

R =E * B, where "#" denotes convolution.



Before considering the forward and inverse problems, we need to
do a few preliminary steps. First we need to define the appropriate
coordinate systems to express our variables and equations. Under
the assumption of a two-dimensional earth we will be dealing, mainly,
with three coordinates (Figure 2.2a): the horizontal or offset
coordinate (x) , the vertical or depth coordinate (z) , and the
travel time (t) . The separation of the wave field into two
different components, up (U) and downgoing (D) waves, that
propagate in opposite directions, further suggests the introduction
of separate coordinate frames for each one of them. In particular,
it is convenient to associate a coordinate axis with the
direction of propagation of each wave. The situation is illustrated
in Figure 2.2b, where a coordinate frame corresponding to a dgaﬁéaiﬂé
plane wave that propagates from left to right an an angle 0 is
depicted. The frame for the upcoming wave is shown in Figure 2.2c.
We will associate the coordinates (x, z, t) with the observer

frame, ( x", 2", t") with the downgoing waves (D) and ( x',

z', t') with the upcoming waves (U) .

Furthermore, in order to implement computer algorithms, we will

define a set of discrete coordinates ( j, k, n ) according to:

x=jDx; z=kDz and t =n Dt , (2-1)

where, Dx, Dz and Dt are the sampling intervals along x , 2z and

t respectively. 1In this notation, U(x,z,t) then refers to function

n

K, i is the same function in the
b

U defined in a continuum, while U
corresponding discrete space. Figure 2.3 indicates that, once Dx and

0 have been defined, a suitable choice for Dz and Dt could be :
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Dz

Dx/tan(6) (2-2a)

Dt Dx / (vasin(e) ) . (2-2b)

The second parameter we have to define in our general problem is
the propagating medium, that is, the earth model. In this respect
one of the simplest models that can be considered is that of a
horizontally stratified earth (one-dimensional model). This model
requires all the medium's characteristics (reflection c¢(z) and
transmission t(z) coefficients, velocities v(z) , etc.) to be
functions of depth only, which from now on we will associate with the
coordinate z . 1In many cases an additional simplification is intro-
duced: the elastic parameters vary in such a way that velocity is
expected to remain constant. In our study we will be using a two-
dimensional model. Our medium will allow for depth and lateral varia-
tions of the reflectivity and other elastic constants. The lateral
variations, though, will be considered small enough as to be able to
ignore back scattered waves. For computational and illustrative
reasons the medium may be divided into horizontal slices, but the
layers need not be horizontal. Finally, although not a necessary
condition, for simplicity most of the time we will ignore tranémission
effects and intrabed multiple reflections. These approximations seem
pretty reasonable in quite a large number of real data examples and,
especially, in marine seismograms. In the cases where it is not true,
the inclusion of transmission coefficients and intrabed multiples do

not represent a major problem.
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WAVEFRONT

Figure 2.3. Slanted propagation in layered media. The ray
diagram for a plane wave that propagates from left to right at
an angle 6 to the vertical is shown in this figure. We

assume that both shots and geophones have the same separation,

2 Dx .
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Finally, we need an operator which is capable of propagating the
wave fields through the acoustic media. Here we have several choices.
The most simple one is to assume a ray approximation for the wave
propagation, in which case the energy will be merely translated from
point to point along ray paths ([3], [12], [14]). Although this model
allows for variations of the reflectivity and velocity along the wave
trajectories, it excludes diffractions. If we want to include
diffractions in our analysis, then we can make use of the more general
differential equations that describe the propagation of acoustic or
elastic waves ( [5], [15] ). Expressed through finite difference or
finite element approximations, these equations may be used as wave
propagators. We could also use an integral solution to the wave
equation, e.g. Kirchhoff Integral ([13], [11] ), as a means for propaga-
ting the wave fields. 1In our analysis, however, we will follow only
the first two options, since the last one seems to be troublesome
when considering variable velocity media. Moreover, we will limit our
present study to the use of the two-dimensional scalar acoustic wave
equation.

2.1. Noah Slanted Deconvolution

Despite its limitations, a ray propagation-layered medium
approximation has proven to model many important real data cases
reasonably well. The fact that the earth itself tends to be horizontally
layered and that diffractions are only noticed in relation to very

disturbed geological interfaces may account for this. On the other
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For most cases we can neglect transmission effects and intrabed

Ie
e
e

multiples, which is equivalent to assuming t t=1 and ¢ 0

respectively. Thus, equations (2-3) become:
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(2-4a)

o
13
(w]]

(2-4b)

If now we discretize U and D according to (2-1), equations

(2-4) can be rewritten as:

-n'

gt T Ty T Sy Dy (2-52)
n . ="
EEH’ n = Dk",j" (2_5b)

For reasons that will be obvious shortly, it is convenient to

express U and D as lower-bar variables only. Noticing that within

. =n' n'+1
each layer the waves do not change, we can write Uk' .y = H"—l . 1
»] 9 s J
and ﬁn" = Dn"n1 Replacing in (2-5) we get:
k”,j" "k"_l,j" 4 p g g .
n'+1l n' - n'"'-1
gk'_l j 1 [_ka J ] + ck.' J \i lel_l’jn (2_63)
nll n"_l n"_kll
Dk", 1" = ]21{"—1 n = ees = DO,j" (2-6b)
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Hereafter, U and D will always refer to the "lower-bar"

variables of each interface (U =U, D=D) and c to the "upper"
ones (c=c¢c) . Besides, to be consistent, we have to express all

variables in equation (2-6a) as functions of a unique coordinate system.

a""-k" _ Dnv -k
0,3" 0,j'-k'

Making this substitution into (2-6a) and dropping primes we obtain:

An examination of Figures 2.2 and 2.3 shows that D

n _ 0=l n-k-1
U = U + Dy, 5—k-1

K, J k+1,5 Sk, (2-7a)

This difference equation allows us to extrapolate upcoming waves
from within the earth up to the surface. If we want to bring them
from the surface back into the earth, then equation (2-7a) can be re-

expressed as:

Un _ Un+l n~-k

K, J k-1,5 7 %k,3 20,j-k (2-7%)

Equations (2-7) are supplemented by several boundary and initial
conditions:
1) The upcoming wave at the surface is the reflection seismogram
R
J
U, . = R’JEl (2-8)

2) We will assume that the upper boundary of the medium (air-water
interface in the case of marine data) is a perfect reflector

(c = -1 ). Thus, according to Figure 2-5:
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3) Causality tells us that at a given boundary we cannot have an
upcoming wave before a downgoing wave encounters the interface.

Mathematically this means that:

n . =n-1 _ _
gk,j = Uk+l,j = 0 for n<k. (2-11)

An important consequence of the above is that by making n = k

in expression (2-10b) and according to (2-11) we have:

Kl _ 0 } 0 _ .0
i T %3 P03k T %k (Bjok T Ry
or
k+1 0 =k 0
., = U . B, = U~ . B, 2-12
“Gi T Yk,g /B T Uy / By (2-12)

Equations (2-7) plus the additional boundaries and initial
conditions (2-8) through (2-11) define a well-posed problem, perfectly
suitable for solving either the forward or inverse problem. Given

the shot waveform B and the reflection coefficients c(x,z) , in

order to solve the forward problem we start with Uk+l , = BQ c, .
k-1,] =k "k,j

and use equation (2-7a) to extrapolate this upcoming wave up to the

surface. If given instead R and B , we start with Ug i = R? and
3
use equation (2-7b) to bring this wave back down into the earth, till
we get Uifi i Then (2-12) allows us to compute the reflection
b

coefficients. We actually can reproduce this recursion in order to
obtain a more compact and familiar expression. In effect, for the

forward problem we have that
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n n-1 n-1 n-2 n-2
R, = U,. = U, ,+c, ,D = U, . +c, . D .| +
] 0,] 1,3 1,5 70,j-1 2,7 2,3 70,j-2
(2-13)
n/2-1 .
T T 1 o e
1,j 70,j-1 n/2-1,j 4=1 1.3 70,3-1

Renaming indexes, this relation can be re-expressed as:

n-1
R, = B c + I c ( B2n—1 _ R2n—1

i=1 "i,j © Ti-i -1 ) (2-14)

The "2n" in B and R 1is because we defined Dt as the one
way travel time between layers Dt = Dx/ (vsin{8)) . Actually it is
more convenient to define it as the two way travel time
Dt = 2 Dx/ (v sin(6)) . This implies sampling B and R in time half

as often as before. With this convention we then can re-write (2-14)

as:
n 0 n-1 n-i -1
R = B, ¢ .+ % c, ., (B Lt-gY1) (2-15)
3 j=n 3 Ly 1L j-i j-1
Correspondingly, for the inverse problem we can start from:
0 _ . ktl _ k2 1 _ _
Bik %k,5 T Yk-1,3 T Uk-2,5 7 %k-1,3 Po,j-k#r T v o (2716)

which, after the same considerations as before, produces:

k-1

y 5 e, . (BT o gELy ol

c . il .
jop 13 =i 31

k 0 0
, = R, /B, - 1/B.
k,]J ¢ ] / j-k ) 1/ i-k

If we assume that the shot waveform is just a single pulse

( B? = B? =1 ), then (2-15) and (2-17) simplify into:
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n-1 -1
RY = ¢ .- I c R (2-18)
3 3 4o 133
and
k-1 ,
¢, . = R+ 1 o, . rEE (2-19)
k,J | i=1 1,] j-1

Since we are assuming an impulsive shot waveform, in the two last
relations R refers to the "white" seismogram (shot waveform removed).
In contrast, the R of expressions (2-15) and (2-17), is rather the
actual recorded or "colored" seismogram (shot waveform included).
Expressions (2-15) through (2-19) are very similar to those obtained
by Riley in his one-dimensional algorithm and, for the case of vertical
propagation, they actually become identical.

Expressions (2-18) and (2-19), which imply feed-back recursions
are numerically stable. The situation with (2-15) and (2-17) is
somehow different since stability here requires the shot waveform to
be minimum phase, especially when solving the inverse problem. Hence,
for the practical implementation of the algorithm we have two alter-—
atives: 1) either we use the recorded seismogram R and apply
(2-17) under the assumption that the estimated input waveform B is
minimum phase, or 2) we deconvolve first the recorded seismogram with
the estimated waveform B and then use the obtained "whitened"
seismogram in conjunction with (2-19). Since in most of the field
data cases B tends to be non-minimum phase, the second alternative
seems more practical. 1In any case, whatever alternative we follow, it
is important to point out that both options require a good knowledge
of the shot waveform B . Some methods for its estimation will be

discussed in the last chapter.
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Finally, I would like to remark that (2-15) and (2-17) are
actually two different representations of the same basic relation,
thereby a single computer algorithm can be used to solve both the
forward and the inverse problems. Memorywise, the algorithm is very
efficient and computations can be greatly reduced by carefully gating
the data as to avoid unnecessary calculations. This applies, for
instance, to the water layer which in some cases can be significantly
large. Detailed gating techniques are discussed by Riley (1976).

2.2. Synthetic Examples

The first example in Figures 2.6 and 2.7 illustrates the amplitude
correction that we may expect from a slanted theory, if the reflection
coefficients vary laterally. The "earth model" corresponds to a termina-
ting horizontal reflector, overlaying a deeper flat reflector with

reflection coefficients ¢ and c¢

1 2 respectively. Figure 2.6 indicates

that for the first order peg-leg we have to consider two different
paths (continuous and dashed lines). Starting with the shots at the
extreme right of the figure, each path bounces once from each reflector
(Figure 2.6a), arriving at the surface with an amplitude equal to

- ¢y ¢y (assuming that a unit amplitude impulse was sent into the
earth). Since in this case both trajectories reach the surface at

the same time, the total recorded amplitude will be - 2 €1 Cy -

But as the shots move toward the left (Figure 2.6b) one of the two
peg-leg reflections is lost (the short-path-last). Thus, this reflec-
tion is half the strength of the previous case, that is, - Cy €y -

Similarly, for the second order peg-leg we shall start with three
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different paths accounting for a total amplitude of 3 ci cy 3

but after the short-path-last reflection hits the edge of the first
reflector, two reflections are lost and, consequently, the amplitude
should decay to 1/3 of its initial value. Figures 2.7a, b and ¢
illustrate these considerations. Figure 2.7a shows the model, followed
in 2.7b by the computed vertical reflection seismogram (forward
problem). As the theory predicts, no lateral variations in amplitude
are observed in any of the multiple reflections ( Ml’ M2, PLl, PLZ’
etc.). On the other hand, Figure 2.7c¢ shows for a slanted plane wave
that propagates from right to left that the amplitudes of the peg-leg
reflections ( PLl and PL2 ) do indeed vary laterally according to

Figure 2.6.

C2

Figure 2.6. First order peg-legs for a terminating horizontal
reflector (cl) . When the sources at the right are sufficiently
far from the edge of the first reflector (a), the geophones
will record both paths (solid and dashed lines). But as the
sources approach the reflector's cut-off, the short-path-last
peg-leg is lost and the geophones will record only half the

amplitude recorded at the right for the same peg-leg.
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Figures 2.8 and 2.9 illustrate other differences between vertical
and slant seismograms. Figure 2.8a shows the model considered,
followed in 2.8b by the vertical seismogram and, for comparison, the
slant seismogram in 2.8c. As before, P1 - P2 are the first arrivals,
M, - M2 » the sea bottom multiples and PL1 - PL2 ,» the corresponding

1
peg-legs.

First, notice that the multiples produced in the two cases
(vertical and slant) are different. The difference in arrival times
is due to the separate paths followed by the rays in each case, while
the difference in shapes is due to the fact that each time the ray
reflects from the irregular '"sea bottom", it picks up a different
structural frequency as shown in Figure 1.2.

Secondly, an interesting effect can be noticed on the peg-legs.
Since the travel times involved in this case are longer than in the
case of simple multiples, we expect greater differences in shapes
as well as in arrival times when considering all the trajectories
of a given order. Again the difference in shapes arises from the
fact that each kind of peg-leg will reflect a distinct geological
frequency. 1In this case, as shown in Figure 2.9, the short-path-first
peg-leg will image low wavelengths, while the remaining will reflect
the high wavelengths of the "sea bottom". The travel time separation
of the two peg-legs seen in Figure 2.8, is obvious in Figure 2.9, where
it is shown that the short-path-first peg-leg (low frequencies) will

arrive first.
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Finally, Figures 2.10 and 2.11 illustrate the inverse algorithm
for the same model of Figure 2.8. Figure 2.10a shows the initial
"earth model", (b) the corresponding slanted reflection seismogram
and (c)  the reconstructed earth model, computed from the reflection
seismogram. Figures 2.11 (a) , (b) and (c) repeat the previous sequence
but for a model with a relatively large noise level, in order to test
the stability of the algorithms in the presence on random background

noise. As 2.11b and 2.1lc show, the results are quite acceptable.
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