OVERTHRUST IMAGING COORDINATES

Jon F. Claerbout

We want to define the principles involved in imaging reflectors with
dips of 90° and more (overthrusts). The theory being developed should handle

even extreme rays like those depicted in Fig. 1.
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FIGURE 1.—Overthrust imaging.

The coordinate frame we will develop for this problem should be optimum
when the waves we are dealing with are generated from a point source moving
horizontally along the surface of the earth with any particular velocity
v = 1/p, where p is Snell's parameter. We usually take v to be increasing

with depth. Figure 2 shows a typical ray and a front.
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FIGURE 2.—Intersection at (x,z) of a ray and a front. The ray
intersects the earth's surface z = 0 at X, =T and the front intersects
the earth's surface at Xp = f.
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The time taken for the source to move along the surface z = 0 from
x=r to x=f is p(f-r). This is the same time as for the propagation along
the ray from the surface at r to the front at the point (x,z). Integrating

the horizontal and vertical components of the ray velocity gives

p(f-1)
X = % +‘f v sinf dt , (1a)
0
p(f-r)
z = j’ v cosf dt . (1b)

0

Equation (1) defines a change of variables from (r,f) to (x,z). This means we
can express the wave equation in terms of the independent variables (r,f).
Abbreviate sin® by s and cos® by c. By differentiation of (1), we find

the Jacobian of the transformation to be

:-dx_1 c? s2 dr]

[dzj B -cs cs df | (2a)
i c s c 0 dr

= | —s c | ~0 s df | ° (2b)

Note that the first matrix is a rotation and the second is a shrinking transfor-

mation that is not invertable for 6= 0 and 6 = 90°.

It is worthwhile to take a quick look at the constant-velocity case.

See Fig. 3.
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FIGURE 3.—Ray and front intercepting at a point (x,z)
in a constant-velocity medium.
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From Fig. 3 we get the relations

(f-1) sin® cos® ,

N
I

r + (f-r1) sin?e

™
It

]

r cos?9 + f sinze,
which can be used to confirm the Jacobian (2a). Let us define some primed

{-drl. (3)

o

coordinates by
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Substitution of the right side of (3) into (2b) shows that (dx',dz') is just

a rotation of (dx,dz):

fdx
?dz

| F— |
o]

n

4

=9

»

—

H (4)
|

hence, dx' and dz' are orthonormal.

Premultiply (4) by the inverse of the rotation matrix

ST

In vertical incidence plane wave studies where z' = z, we defined retarded
. . z . .
time t' for downgoing waves as t' = t - e Now let us define retarded time

t' in the locally rotated prime frame by

L
de' = dr - %2 | (6)
v

' dz'
dat' + el (7N

il

dt

We now augment (5) with these time variables:
1 0 1/v dt'
=0 1 0 dx' | . (8)

i
i
i
0 s c | dzJ 0 0 1 _dz'

Premultiply by the inverse of the right-hand matrix:
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1 0-1/v [1 0 0 [&c] ae'l 1 0 o] [aef
io 10 0 c-s| lax| = |ax'| = c O dr | . (9)
o o 1] lo s ¢ iﬂgf laz"| 0 s |af |

Premultiply by the inverse of the right-hand matrix and interchange the sides

of the equation:

[&t'} 1 0 o ll1 o-1/v]]1 0 0 dt |
lar | = Jo 1/c o |jo 1 o |0 e -5 | dxg (10)
laf 0 0 1/sjl0 0 1 ][0 s c |dz!

We have not yet decided whether to solve the wave equation in (t',x',z')
coordinates or (t',r,f) coordinates. Performing the usual coordinate trans-

form operations, I have found that the choice is between

P' = 5P , (11)
t'z! x'x'
and
v sin®
P! = — P! . (12)
t'f 2 cos?8 rr

Equation (12) has the disadvantage of an annoying pole at 6 = 7/2.
Equation (11) has the advantage of nearly constant coefficients. This means
we will probably want to use the orthonormal coordinates (x',z') rather than
the surface coordinates (r,f). But there is a catch. Equation (1) provides a
global mapping from (r,f) to (x,z). But Egs. (3) or (4) provides only a
local mapping of (dx',dz') to either (dr,df) or (dx,dz).

The (x',z') coordinate frame will involve us with the need to find a
numerical technique for injecting energy on a computational mesh at some place
other than z = 0. Injecting energy at side boundaries has been done by David

Brown elsewhere in this report.



