14 September 1976:

One Way Elastic Wave Equations

by Bjorn Engquist

Let us start from the following formulation of the elastic

wave equation
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where u and w are the horizontal and vertical displacements
respectively, and where the density p and the Lame parameters
A and 1y are constant.

We will modify equation (1) such that =z can be used as
evolution direction. In this way upgoing and downgoing waves are
described separately, similar to Claerbout's treatment of acoustic
waves (see Claerbout). Compare also the study of elastic waves
in frequency domain (Landers, Claerbout). Equation (1) must essen-
tially have time as evolution direction and cannot be used for
extrapolation of waves in space.

We rewrite (1) in vector notation
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Our one way elastic wave equation will have the form
U = 0 (3

where Si (i=1,2, 3, 4) are 2x2 matrices. In our examples
some of the matrices vanish or contain zeros.

We will derive different sets of Si corresponding to
different orders of approximation or to the use of other dependent
variables than u and w . Well posedness will be proved for
a particular equation and for a physically reasonable range of
A and u . That is, we will give bounds on the growth of the
solution showing that the equation can be used for calculations.
Finally, the dispersion relation for some of the equations are
studied and also used for numerical well posedness analysis.

The dispersion relation of (2) is
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WL (w, k, k) = - To "+ Dk +Hkk +Dk " = 0 (4)

We want dispersion relations for downgoing and upgoing waves

qu_(uh kx’ kz) = 0 and wl (w, kx’ kz) = 0 |,

approximating (4), and corresponding to differential equations
which can be solved as initial value problems both in =z and t
As we have mentioned, the equation (2) cannot be solved in a bounded

way as initial value problem in =z . With L+ and L_ approximating



L we mean that L+i3= 0 or L_f3= 0 should imply that W is
x13 kx 4

small, say of order O (]734 ) or O (I:;ﬂ ) . In this way a

solution to our approximate wave equations will be close to a

solution of (2) for waves which travel essentially in the =z

direction. Let us concentrate on downgoing waves and insert a

trial expansion
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into L=0 (we have iw as the dual of t ).
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When the factors in front of 1 , - (7;-) and (7f5)3 are

annihilated we have
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- 1+ D2A = 0
- HA+ D2 (AB+BA) = 0
2
Dl—HB+D2(B + AC+ CA) = 0
- HC+ D2 (AD+ DA+ BC+CB) = 0

~

If L+Uf=0 for some w , kX and kz and some vector U , then
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~ k
Hence, if (5)-(8) are valid, then LU is of order O ([:? 4)

(5)

(6)

(7)

(8)
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Let us now solve (5)-(8).

A A
(5): A = (All AlZ \) = (D;l)l/2 (for u>0)
21 22
S el I e v A
. -1,1/2 .
The solution A = - (D2 ) corresponds to upgoing waves (L)
hA22
0
-1 d?_
(6): AB + BA = D HA =
2 hA
11
3 0
1
- R h
12 dy(A11+A55) vy (Y +/d,)
h A

h
21 dy (A +8)5) /Ay (Y3 +vdy)

Bjg = By, =0
_ 1 -1 2
(7 : Ac+cA = -0t D +D; HB - B
d. hB
_ 4 21 _
€1 = (-T 3 Big Byy )/ 2 A
2 2
4 ) 2
7 2
Ay 2/, (VE+/A)
C = (-i+hB12-B B.. )/ 2 A =
22 d d 12 Bo1 22
1 1
4 ) 2
2/d. 2
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Cipg = €y =0
-1
(8): AD+ DA = D' HC - BC - CB
he,,
D, =« a, = By (Cpp +Cyp) ) /(A + Ayy)
hep,
Dyy = a =By (Cpq +Cp) ) /(A + A))
Djg = Dy, =0

If L+ is used directly to determine a differential equation,

that equation will contain third derivatives. We can instead

consider a truncated dispersion relation
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which corresponds to the differential equation

Utz + AUtt + BUtx + CUxx = 0 (10)

That is Sl=0 s SZ=A , S3=B and 54=C in formula (3). This
is the equation for which we will prove well posedness.

The error between L and L' is of order O (l7§13) . By
using a matrix SliéO we can formally derive an approximation of
one order higher.

k k k k 9

nwoo_ XN _Z _X _X
L+—(I+Slw)w+82+53w+s4(w) (11)
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The relation L:j=0 is equivalent to

kz kx -1 kx kx 2
k k k
Z X 2 2 X\ 2
o + 82 + (S3 - SlSZ)-zr + ( S4 - 8183 + Sl 52 )T (—)
k k
2 3 x .3 x4
+ (=58, + 8,75, - 5.78,) (=) = o(|-E")
If L+ and Li are compared we have

A = 82

B = S3 - SlS2

cC = §, -S8.8_+ S 28 (=8, -S.B)

4 173 172 4 1
_ 2 3 -
D = - SlS4 + Sl 83 - Sl 32 ( = SlC )
and
-1
Sl = - DC
82 = A
_ -1A
S3 = B DC
-1
84 = C-Dc B

We can also work with retarded time for these equations as

we can do for the scalar wave equation.

The elastic equations,

(12)

however, describe two wave speeds and we can only hope to eliminate

one of them.
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In addition to the change of independent variables there is

the possibility of using dependent variables other than the displace-

ments

u and w .

As soon as the original equations with time as

evolution direction have the structure of (2), we can apply our

analysis.

If, for example u,

are used as dependent variables

the dispersion relation (4) is changed by the following transformation

This alters the coefficient matrices such that

vanish.
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u
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the mixed derivatives
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When H=0 we have B and D1 and hence, also S1 and

S equal zero.

3
N Ca\V?
s, = & = (L2 o | %@ 44, )
2 2 1
4
1 _ h
Vd, Y, ¥d, (Vd, +Vd,)
- 1
&

(The square root can be determined for all matrices with positive
eigenvalues.)
The coefficients in the matrix S4==C are then determined from the

system of linear equations

_ -1
AC + CA = D2 Dl

In the same way we can derive one way wave equations for other
pairs of variables like the stresses L and T,« ©F the
combination v and the stress T The latter pair is used
by Claerbout and Clayton in this report. They derive the coefficient
matrices starting from a formulation of the elastic wave equation other
than (1).
The question of well posedness remains. We will prove that
(10) can be solved in a bounded way as an initial value problem

both in t and =z if u > A/2



133

In order to study the problem where 2z is the evolution direction

we transform (10) in t and x .

. K
U = i(-wA-kB--2¢)U
V4 X w
U(w, k,0) = £(w,k ) (initial data)

The matrix B has positive off diagonal elements and can be

symmetrized by a diagonal transformation

P O spgl - O VBiBy
0 By PPy O

Since A and C are diagonal the matrix

2
kx -1
Q = -S(wA+k£3+:rC)S
is symmetric. Hence, we have
(sU), = 1Q(sD)
SU (w, kx’ 0) = exp(iQz)Sf (w, kx)

The Lz—norm of an exponential of an antisymmetric matrix is

bounded by 1 and we have from Parseval's relation
|| u(t,x,2) || < Constant [/ f(x,t)||

For the stability in time we transform (10) in x and z .
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. ) -1 -1 - 2 -1,
Utt + i (sz + kXA B) Ut - kx ACU = 0
UCO0, ky k) = f£(k, k)

Ut (o, kx’ k ) = f(k_, kz)

We can symmetrize (kZA_l

since A_lB has positive off diagonal elements. If we can show
that the diagonal matrix A—lC has negative elements the well
posedness is guaranteed by the following lemma.

Lemma: A system of ordinary differential equations Utt = R[%:—

where R=-R* , S>u>0, [[s||/u < €, has a solution with

the following bounds

o |l cdlv@ll+]lv @) o0=<e <1

(The constant C depends only on Cl and T ; R* denotes the

transpose of R .)

Before we prove the lemma, let us check on A—lC . The

. . -1 -
diagonal matrix A has positive elements.

2
C = - dl + hz < - dl + dl <
11 2vyd 2 2yd 2
IRV SR IR ¥
for
LY 2
22 Z/HI 2

(13)

+ kxA—lB) in the same way as above,

SU
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C22< 0 1is equivalent to the following

2
d2 (d1 + d2 + 2led2 )-h™ > 0
2uv(A+ 2w + 2u2 - Az - ux > 0

> A2

Hence u > A/2 is necessary for A—1C to be negative definite which

we need in our proof.

Proof of lemma: When R=0 we are back to a system Ut==RlJ where R
is anti-symmetric and U is bounded. Hence, we assume S #0 and rewrite

the equation as a system

ve = Rv- Su
(14)
u. = v
The matrix S 1is positive definite, since n > HSI]/C1‘>O and,
hence, it has a square root and we can make the transformation
(I 0 v I 0 )(R —S)(I 0 )
*
o s/?[\u o s\t ollo U2
t
(1' 0 )(v)
*
0 S1/2 u
v R —81/2 v
Sl/2 u Sl/2 0 Sl/2 u
t
R _Sl/2
The matrix 1/2 is antisymmetric. Its exponential is then bounded

S
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by 1 and we have

v 12+ 11872 w2 < v 1% + 15Y2 wo |2
For ||s|| > 1 we get
11872 w12 < 1w |12 + [Is]] |lu]]?
e 1% < 2 v 12 + L0 oy 2
la ] < e (Jlv ] + [Ju@]])
If |[s|| <1 we can write the system (14) in the following way

e ] <1, [[e"]] <1 implies

2)1/2 2)1/2

v ] 1%+ lum ]| < exp(t)  ([|v]|* + [|u]]

Hue) [ < ¢ ([uc]] + [[v)]])

(Here C depends on toax )

This ends the proof of the lemma.



Let us go back to the dispersion relation LL==0 , (9), and

plot the two real roots kz/w of (det denotes determinant)
N =
det (L+ (w, kx’ kz) ) 0 (15)

as functions of kx/w (Figure 1 -- the constants p , A and
v all have value 1 ). The curves correspond to the pressure and
shear waves.

In Figure 2 the corresponding curves for retarded time
(t'=t-~ z/VﬁI', k = ké - w'/ VEI') are displayed. The dashed
circles correspond to the dispersion relation L=0 [see (4)]. As
expected the fit between the two sets of curves is best for small
]kX/w|.

These figures also give us necessary conditions for well
posedness of (10). We can see that for all real w , kx (w#0)
there are two real roots kX such that (15) is wvalid. Since
det(LL) is a second order polynomial in kz (or kz/w) s
there are no other roots.

Let us assume that there existed a complex root kz = a+ib
(b#0) . This means that there would exist IAJ#O such that

L; U =0 and hence, also a solution
exp (i (wt + kzz + kXx) )U

to (10) with norm ]exp(—bz)]||ﬁ“ . If b>0 for w , kX it is

negative for -w , —kX . The absolute value of b grows if w and

kX are multiplied by a large constant, since the dispersion relation

is homogeneous in w , kX and kz . This tells us that if there

137
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is a complex root there is also an exponentially growing solution
that can grow with arbitrary rate.

Our Figures 1 and 2 indicate that the one way wave equations
are well posed when regarded as initial value problems in =z .

The full elastic equationms (2), however, have exponentially growing
modes for large kx/w . It is only for small kx/w that we have
the four real roots kz/w which are needed since det(L) is

a fourth order polynomial in kz/w .

We can perform a similar study for the t direction using
Figure 3. The real roots w/kz of (15) are plotted as functions
of kX/kz . The equation (15) is fourth order as a polynomial in
w and we have four solutions w/kz for all kx/kZ suggesting
well posedness. (w = kX =0 1is a double root.)

With retarded time t' =t - cz where c = 1//EI ,» equation
(15) is a third order polynomial. Figure 4 also shows a stable
picture with three real roots. When c> 1//5; there were complex
roots in all experiments. Examples are given in Figures 5 and 6. The
experiments also indicated that u<A/2 caused equation (10) to
be ill posed. For u > A/2 we got the right number of real roots

as expected.
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Figure 1. ¢ =0 Figure 2. ¢ =1/

-]
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7 I

Figure 3. ¢ =0

Figure 4. ¢ = 1/Va,

Q(u'/k

\/; b

—
k}'{/k; - ﬁ N

Figure 5. 2c = l/¢51-+ l/%;; Figure 6. ¢ = 1//85

Retarded time t' =t - cz
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