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A Brief Derivation of the Dix Theorem

by Jon Claerbout

The equation for a circle in (x,z) space or a hyperbola in

(x,t) space is

x" + z = v~ t (1)

The question is this: Suppose waves propagate outwards from a
surface point source in a stratified medium. The reflected waves are
then fit, by some procedure, to a hyperbola and a v is determined.
In what sense does v represent an average of the velocities in
the layers? Begin by differentiating (1) with respect to x at a

constant value of z

Thus,
2x = ¥ 2t (35
z
or
i o= X (—2&): 2)

From Figure 1 we see that in any layer the sine of the

ray angle from the vertical is given by

v dt
dx

sin® =
which we can recognize as

ot _ sin® (z) _
(ggz = v "~ P # p(z) (3)

se



167

constant =z

ray

Figure 1. Diagram to illustrate that

sin@ _ ot
po= = = (),
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We wish to develop a mapping between the (x,z) coordinates
in the vicinity of the source and (p,t) coordinates defined as ray
parameter and travel times of rays leaving the origin (x,z) = (0,0)

Let the velocity v(x,z) = v(z) be representable in either frame

v(x,z) = v(z) = v'(p,t)

Now the x coordinate of the tip of the ray as a function of (p,t)

will be
t
x(p,t) =S v'(p,t) sinB(p,t) dt
0
t
' 2
= pg v'(p,t) dt (4)

0
Inserting (3) and (4) into (2) we have

t
\72 = iS v'(p,t)2 dt (5)
t Jo

This shows that v 1is the root—-mean-square velocity of the wave along

its path. Notice that the "straight ray" approximation which occurs

in some derivations is not really necessary. Of course the data will

not be an exact hyperbola. But, if it is windowed about some particular
x and t and 09t /9x 1is measured in that window then the v determined
in that window will be exactly the RMS velocity for that particular

ray (p)
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From study of Figure 2, you should be able to recognize that

t'(P’d) = 2T(P,d) - 2px(p,d) (11)

Using (9) and (10) we find

d
1
t'(p,d) = Zi, (m— P tan6 ) dz
0
d 2
t'(p,d) = 2 ( 1 _ sin” 8 ) dz
P> P sinb cosH sinb cos@
d
t'(p,d) = 2p‘[ ﬁ%ﬁ% dz (12)
0

Inverse interpolation enables us to construct a table d(p,t') from

(12). The lateral shift of interest is

L dlp,th)
Ax(p,t') = tan[6(z)] dd (13a)
J
0
tl
=J tan(6) 51%, de! (13b)
0

Differentiating (12) gives dt'/dd which reduces (13b) to Schultz's

Yesult
t'

r
rx(p,t') = 515 tan® [ 6(p,t") ] dt' (14)
J
0

Equation (14) is what you need when you have downward continued data
in (x',t') space and you wish to assume a velocity so that you can

laterally shift the data in order to display it in (x,t') space.
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Slant Plane Wave Interpretation Coordinates

by Philip S. Schultz

Although field data is collected in common shot gathers, this
format as a data display for interpretation is unsatisfactory because
within a gather the energy from a given horizontal reflector does not
emanate from a unique subsurface reflecting point. A more desirable
data display is the CDP gather for which, in a non-dipping earth, any
given event on a gather has the same subsurface reflection point.

We now face a similar situation in our slant frames. The slant
stacks, having been done over common shot and common geophone gathers,
exhibit the similar tendency for the subsurface reflection point to roam.
Figure 1 shows this phenomenon for a single trace in a constant velocity
medium. Although the upcoming ray paths of all three reflectors are
colinear, they clearly do not represent energy emanating from reflection
points directly below the geophone.

If we had a seismic section composed of many traces all of the same
propagation angle, 6 , we would (for interpretation purposes at least)
like to perform a coordinate transformation resulting in a uniform
shearing action on these data, so that we might place reflected energy in
its proper horizontal position.

Our starting point will be the horizontal and vertical coordinates
which result from the stacking process itself (x', t') and a perfect

knowledge of the depth-dependent rms velocity , Vrms(z) .
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v = constant

Figure 1. Ray paths in the slant frame for three horizontal reflectors
in a constant velocity medium. The energy received at the geophone is

displayed as a single trace by the slant stack process, but as seen

in the Figure really represents subsurface reflection points which lie

along a ray path.
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Figure 2 shows a ray path diagram for energy reaching a geophone from
a buried reflector. The ray path is that expected from data which have
been slant wave stacked over common geophone gathers. The upcoming ray
has ray parameter, p , and intercepts the geophone position. Through
a given horizontally stratified earth medium, these two conditions
uniquely define a ray path. After a slant plane wave stack over ray
parameter p , this ray path (actually a Fresnel region around the ray
path) is the only one through which energy can be transmitted to geophone
position, g . If we define x' to be the horizontal coordinate of a
trace that we obtain from a slant plane stack, then x' is constant over
the ray path.

The transformation we seek, therefore, is to the coordinate labeled
x 1in the Figure. This is the actual horizontal coordinate of the sub-

surface reflection point, and is related to x' and z_. by

0

e
I

x' + f(zO) /2

%0
x' +{ tan 8 (z) dz (1)
0

where f 1is the offset and tan 9 (z) can be written in terms of the

ray parameter, p = sin® (z) /v(z) . After describing the time coordinates, we
will derive an expression for £/2 as a function of ray parameter, rms
velocity, and two-way slant frame travel time to the reflector at zg -

Various time coordinates are shown in Figure 3. Definitions

for these coordinates are given below.
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d(£/2)

Figure 2. A ray path diagram for data which has been slant plane wave stacked
in common geophone gathers. The plane wavefront source is in the t'=0 position
(t' defined in text and Figure 3). The surface position labeled "s" is that of

the particular shot point from which most of the energy is received at the surface
receiver position, "g", for this particular reflector depth and stacking parameter,
P . The energy arriving at g from the ray path shown is all placed at horizontal
coordinate x' by the stacking process. The dashed region of the ray path is a

physical interpretation of the difference in travel times, At , defined in

Figure 3. The triangle to the lower left shows geometrically the relation

df = 2 tan 6 (z) dz
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. s € "shot spread"

Figure 3. A single hyperbolic event shown in a common geophone gather.
The line labeled 'p" shows the stacking trajectory, and its intercept
with the time axis defines t' for this particular event and stacking
parameter p . The intervals marked f and At can also be seen

on Figure 2 in real physical space. Figure 3 shows clearly the relation-
ship At =pf
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t : the shot-to-receiver two-way travel time (ray path shown

in Figure 2).

t' : the two-way travel time after slant plane wave stack with

parameter p .

At : ot -t' .

t : the two-way travel time for a vertically traveling plane

wave or a zero-offset ray path.

Following the derivation in '"Velocity Estimation in Slant Frames

I'" (this report), we observe its equations (23) and (24), and write

(2)

We write below two equations representing the most important result

in "Velocity Estimation ...".

path assumption, the travel time curves for a reflector at

2
L
t + p2 V2 = 1
t 2 rms
0
and
2
t
0 + P2 2 - 1
t2 rms

That is, given the straight line ray

4 are

0

(3)

(4)

Now, incorporating equations (3) and (4) into equation (2), we have

2 '
£ _ P Vimg ©
2 2.2

2L -p vrms)
or
P v2 t'
x = x'+ r§82
2(1-p vrms)

(5)

(6)
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Equation (6) tells us that given slant stacked data of a particular
value of ray parameter, p , we can transform the data from the
( x', t' ) coordinates into the more desirable ( x, t' ) coordinates
by a t'-dependent horizontal shifting of the data. In the case of
constant velocity, we can see that equation (6) predicts the uniform
shearing of the data that we intuitively expected to find in view of
Figure 1.

Let us generalize these results:

We have field data in ( s, g, t ) coordinates. After the slant
stack over common geophone gathers or common shot gathers, we have the
coordinates ( x', p, t' ) , with the sign of p denoting over which
type of gather the slant stack was done.

The horizontal coordinate, x' , is constant along a ray, but
clearly is not constant for subsurface reflectors which have the same
earth-based horizontal coordinate, x . Our results here allow us to
transform slant stacked data from ( x', p, t' ) dinto ( x, p, t' )

by equation (6).



