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Some Numerical Aspects of Stacking

by Bjorn Engquist

We will here analyze different ways of producing common shot
slant stacks. The results can also be applied to other types of stacking.

Mathematically this means that we will study approximations of
line integrals of a function which is known through measurements on
a regular two-dimensional mesh. These measurements are themselves
partial integrals of the function.

In particular, we will concentrate on the following problems.
Data is recorded on a finite space interval a < x < b . 1In order to
produce a slanted plane wave we would like to integrate over an infinite
interval. The other problem is the approximation within the interval
(a, b) when the sampling is so coarse that a simple summing procedure
is not enough.

To be able to treat these problems mathematically, we will work
with simple models both in the analysis and in the experiments. We
believe that the results indicate solutions also for practical cases.

Our numerical problem is then to approximate
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We say that a method is n'th order accurate if the error in the
. . . n n ,
approximation is of order O (At + Ax ) . We need (1 +1 ) st
order accuracy when estimating the integral over the short intervals to
get an n'th order method for (a,b).
Let us approximate the integral
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by the formula

U(k)
S, (A) = Ax % (a, P, .  +a, P, ) (5)
k =L (k) i,k ",k Joktl i, ktl
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The full integral is then S = 3 S, , for x.,=a, x =b .
k=0 k 0 K

We can now use Taylor expansions to determine conditions on aj X
b
which are necessary for a second order scheme (e =0(0x)).
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Since € = 0(4Ax) , and in most cases ¢ = > we have

_ 2
Pj,k = P (tj’ xk,)+ 0(Ax")
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When only second order methods are considered the O(sz) term

. \
can be neglected. The argument of P below is ( pxk+1/2+ t', xk+1/2 )
X1+l '
Sk = [ (P +(px - (ka+l/2+t ))Pt+ (x—xk+1/2)Px+
J
*k
2 3
+ 0(Ax") ) dx = Ax P + 0(Ax7) (7)
= z + +
Sk(A) Ax b ( (aj,k aj,k+l )P
+AX—(—a +a J)P_+ At (a t +a t )P, +
2 ok Tj,k+l “Tx jok i,k Tj,k+l Tj,k+l t
+0 (ax>+ae2)) (8)

tj,k = (tj —(pxk+ t' )) /At

Figure 1.
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In order to approximate Sk modulo O (Ax34-AxAt2) with Sk(A)

we must have

POk T ) T
P ) 7O ®
PO e e B ) T O

We will get the simplest formula if the sum involves only two

points in the t direction for each Xy - Let us look at an example

*x X1 .
o L4 l
° ° t,
o °
t3
Figure 2.
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This is just the trapezoidal rule with linear interpolation in the
t direction. If we use one point in t , the nearest neighbor, we
will have a final error of the size O (At+Ax2 ) . Later, we will see

how several points in t can improve the accuracy and reduce the
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aliasing error even if the scheme still is of second order.

If we want a higher order method the fact that Pj K £ P (tj, xk)

must be taken into account. Our local formulas will now look like

rt+1
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Xg-1
S,.(A) = 2Ax b (
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In the same way as for the second order scheme we can Taylor expand

both sides and choose aj K and bj k in order to annihilate the lower
’ s

order terms. The conditions for fourth order accuracy are the following:

(For convenience we omit the I sign and write a, =a, b, =5b,
jsk-1 i,k

aj K+ = ¢ . That is, in the first equation a+b+c stands for
>
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There are many solutions to this messy system. We will here only

note that it is possible to show

L a, z a, - 1 _1,¢.2
j okl j dekl 6~ 6 (ax)
(12)
- 2,.1,.¢€.2
§ bk T 3 TF(E)

This is a modification of the classical Simpson rule in the x direction.
We have so far used closed formulas. That is the mesh points (xk)

were also end points of the small intervals of integration ( Xp» xk+l )

and ( In the second order case there are simple types

Xe-1? X4 ) -

of open formulas

xk+Ax/2
P(pX+t"X)dX~AXZ.: a.kP,k (13)
x, =Ax/2 J Js Js
k
The conditions on aj Kk are
I a, =1 , z 0 (14)

a, t.
j.k i,k

A typical case with aj x # 0 at two points in the t

b

direction can look like

Figure 3. The values of a,
i,k
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The methods we have derived are valid for any P . We will now
turn to the case where we know something about the structure of P and

assume that locally

P(t,x) = f(t-p'x)+ g(t,x) (15)

where g and its derivatives are small. This means that, in a small
area, P does not change so much along a line t = p'x+t0 . The line
can be thought of as part of a hyperbola in the time versus receiver
coordinate plane. An estimate of the velocity is needed to get an
approximation of p'

We will use formulas that obey conditions for second order accuracy.
Even if our guess regarding the structure of P 1is wrong, we will
still have a second order method. Our goal is to reduce the constant
in front of sz in the error O (Ax2+At2 ) . We want it to depend on
the derivatives of g instead of those of (f+ g) . 1In practice
we see the effect of large derivatives as an aliasing error. Figure

4 shows how it may occur. See also the related paper by Philip

Schultz in this volume.

-1 *x X+l x
t =p'x+t"
_— |
t t =px+t
v

Figure 4.
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In Figure 4, ij corresponds to the integral of P over —g——e .
P 1is described by the traces. The risk for aliasing is especially
large at the inner traces. When p>p' the integrals over ( X~ €,
xk-ke ) does not help so much.
The sampling in x 1is in general, much coarser than that in ¢t .

Our approach is to improve the approximation by summing over several

points in t for each X

t = p'x + constant

Figure 5.

In Figure 5 we can see the idea. We want the integral of P over
(A,B). The function P 1is almost constant along lines with slope p' .
Hence, P takes approximately the same values on (A', B') as on
(A,B) and we can integrate over (A', B') instead.

The relation

Ide=“ir I P dt
P-P

(A,B) (A',B")
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follows from the geometry. 1If the sampling is dense in t and the
estimate of p' 1is good, we can integrate accurately along (A', B')
and the error in the stacking will mainly come from the g part of P .
Let us consider this procedure from a more mathematical point of
view. We will work with the midpoint formula (13 ) , ( 14 ) , where

we approximate

k+Ax/2

SL = J' P(px+t', x) dx

k—Ax/Z

X

X

and first assume that e =0 and At << Ax. The integral over

k ’
# 0 for the points

(a, b ) is as before derived by summing over all S
(k=0,..., K)., In figure 3 we suggested aj K
b

closest to the line of integration. The local error in this formula

is determined by using Taylor expansions.

' - c' = -
Sy (8 Sy ax ( aj’kP(tj,xk) + aj+1,kP(tj+l’xk) )
%, +Ax/2
k 2
- P(px+t',x ) dx = Ax P( Xy + t',xk ) + 0(axAtT) -~
xk—Ax/Z
xk+Ax/2 (x - x, )2 32
- ] \ ]
x, =Ax/2 ox
k
4 Ax3 2
+0(x7))dx = Z= (p=-p' )" £"(x (p-p')+¢t')+
+ 0( Ax3| g |2 + Ax4 + AxAt2 ) (17)

Here | g |2 denotes the sum of the maximum norms of the second derivatives

of g .
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We will now use several aj X #0 in ( A',B' ) and choose the
b ]

weights according to some standard quadrature formula to approximate

the integral

t(2)
1 P( t,xk ) dt
P~ P t(l)

t(1) = px +t' - (p- p ) Ax/2

t(2) X, +t'+(p-p) Mx/2

p 1is the estimated p'

The principal part of the local error comes from the difference between

p' and the guessed value p . Analogous to earlier derivations we can

determine the error : (& = (p' -p)Ax/2)
X £ (1) B (e )y " |
— ( + ) 2 f"(C t-p Xk) dt
P=P " t@)-s £(2)
+ 0¢( Ax3| g |2 + Ax4 + dxAt? ) =
3 |__ _ _ _ _
=80 PR (3¢ pp )2+ 3(pF ('R + (')

p-p

£"(( pp' Jx * £ ) + O 23| g |, + axt + axat? ) (18)

This formula tells us how the severe part of the error depends on our

estimate p of p'

If we also want to enclude the fact that € # 0 and that Pj X
bl

are integrals over ( X, "€ 5 X +c ) , we can project these intervals

k



160

to ( tj—p'e R tj+p'e ) . In this way the f part of P can be treated
correctly. We are left with the problem of estimating a time integral
where the known function values are themselves partial time integrals.
This is like our original problem and we can i.e. use formulas analogous
to (12)

Formula (17) tells us how the error grows with P - p' when
applying a standard method. The function P becomes more oscillatory
with increasing [p - p'l and the contribution to the final integral
decays. This argument suggests the use of a weighting function in the
integral which annihilates P for large |p - p'l . It is a simple
and fast method, but the loss of information when tapering down the
function values is a drawback. See the paper by Philip Schultz and
our own discussion of tail estimations.

Estimation of the tails

There are cases where the tails contribute substantially to the
integral. In practice this occurs e.g. when the point of tangency
between the line of integration and a hyperbolic event is close to the
end points. When the point of tangency is well in the interior of
(a, b ), but the line of integration passes through an event at the
end point, we get another end effect. Since we do not integrate over
a full wave form we get an unwanted contribution to our sum depending
on at which phase we stop the integration.
There are different ways to tackle end effects. We will briefly
look at the possibilities of extrapolating P along the line of integration

or tapering the P values down to zero at the end points.
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However, let us first consider the technique of projecting the
P values off the interval ( a, b ) to the end point traces, where we
have our measurements. In this way we will sum over several points along
the first and the last traces. It is analogous to the method for the
interior where we summed several P, for each fix k .

ik
We will explain the algorithm using figure 6

k-1 X, xkax/Z X

t

4
¢ ‘ Figure 6.

Instead of summing along ( A,B ) we assume that P (t,x )~ f ( t-p'x )

and sum over ( A',B' ) where f takes the same values. Note that if we

use the midpoint formula in the interior, we shall regard xk+ x/2 as
the end point. The relation between the integrals is
f Pdx = ———1_," I P dt
P-pP
(A,) (A",»)

@ B'
The integral I P dt 1is then replaced by f r(t)P(t,xk) dt where the

A' A’

weighting function r decays to zero at B' . How far B' can be
taken depends on how far the approximation P( t,x )~f( t - p'x ) is
valid. We have already discussed how to solve the resulting time integral

over ( A',B')
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We can gain some insight if we apply these ideas to a model problem.

We are only interested in the behavior close to the endpoint.

Define
S = P( 0,x ) dx (= ———=)
2 + (wp")?
0 1
—clt—c X
where P( t,x ) = e sinw ( t+p'x )
w > 1
The primitive estimator of S is
1
E1 = j P( 0,x ) dx
0
and the new one is
_ 1 -ct
E2 = El + _-[ e P(t,l) dt
P

The integration can be carried out analytically and the result looks

typically like

Error E
. 1
(1) (1) E,, p=2p’
() )
(2) E,, p=1p'/2
?-
c
Figure 7.

We will always get some improvement when ¢ 1is large enough. If
we underestimate the slope p' ( in general p - p') we need a stronger
damping than if we overestimate it. These results are valid for a wider

range of problems.
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We can also try to improve the algorithm . Instead of estimating
the tail by the last trace we can average over a couple of traces to
make the procedure more robust. The assumption P v f( t - p'x ) can
be generalized to P~ f( t - p(x) ). There is also the possibility of
using adaptive methods i.e. to let the program determine p' and the
change of P along a line with slope p' .

Let us now turn to the extrapolation approach and write P(t,x) along
the line of integration as a function P( s ) . One way to estimate the
integral of P over ( b,» ) is to extrapolate P inta the unknown
region. That is, using the values of P for s < b to estimate the
behavior of the function in some interval b < x < b' . We can e.g.

approximate the derivatives Ps(b) and Pss(b) and use the estimator

o b'
2
J Pds - [ (CP(®) + sP_(b) +5P__(b) ) r(s) ds
b b

where the weighting function r(s) equals 1 at b and 0O at b' .
This technique has been used in other contexts, but has the disadvantage
that extrapolation is very sensitive to perturbations.

Finally we have the possibility of using a weighting function in the
interior to smoothly take the value of P to zero at the end points a,b .
This is not an estimate of the tail integrals, but can help if P is
highly oscillatory along the line of integration.

Let us look at a simple exampel in figure 8. It shows the dilemma
that we are in. The weighting function must affect several wave lengthes
to be efficient. The risk is then of course that the tapering reach
the essential parts of the integral. We also see that when the end effect

is reduced in size it affects a larger area.
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w(l/2) W (%) : Tapering over %—wave

¥(2) w (2): Tapering over 2 waves

-4

Figure 8a. Weighting functions. S

sl Sl+l s
Figure 8b. The wave form.
0.5 4 .
no tapering
. 1
weight W(E)
weight w(2)
\ s b-s
0 T 1

Figure 8c. Value of the weighted integral as a function of the

right end point related to the wave. The desired value is zero.
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Our main interests in this paper are theoretical analysis and
speculations, but we have also run a few simple experiments. We started
with a synthetic common shot gather with one hyperbolic event. The wave
form was 1.5 periods of a sine function with zero mean value. We used
12 points per wave in time and a minimum of 5 points per-wave in the
offset x . The Pj,k was produced by summing on a finer grid.

When the line of integration was tangent to the event the improvement
from the nearest neighbour method to linear interpolation in t was
only about 5%. At the inner traces the ailiasing error was reduced
5 - 10%Z. 1In the latter case the proposed method of summing over 5 points
for each trace reduced the error 40 - 85%. Summing over 15 points in
the first trace reduced the end effect 50 - 95%. The estimate of the

slope p' was then off by 10%.



