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Difference Approximations of Waves in Slanted Frames

by Bjorn Engquist

We will consider approximations of the one way wave equation in
slanted coordinates using the following coordinate transformation for

upcoming waves (SEP-7, p. 30):

t' = t +Z cosb - X gind
v v
x' = x + z tan® D)
z' = ¢z
w = '
w'
k = k' + — sinb (2)
X x v
w'
k = k' + k' tan® -~ — cos9d
z z x v

When this transformation is applied to the wave equation dispersion

relation
k- —(%—kxz )12 (3)
v
we get
k! + k! tand - %99—3& = - ( %; - (k! + 9;,'* sine)H)M? @)

From now on we will only use the slanted coordinates, but for convenience

drop all primes in the formulas.
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By using rational approximations of the square root in (4) we can
derive the following differential equations describing the inverse

problem for upcoming waves [SEP-8, p.23 or p.60 ].

po+vtamd , L,V _p o (5)
tz 2 cosb “xz XX i
2cos™ 6
v tanb v2 v
P — - —— P + ——— P = 0 (6)
ttz cosb txz XXZ txx
4 cos™® 2 cos™8
0<t<T ’ . < x <X , 2z >0
- - min - © - "max -

The function P is given initially at =z = 0 . Boundary conditions
are given at t =T, x = x_, and x = x . For equation (6) we need
min max

two boundary conditions at t = T . See SEP-8, p. 61 for a discussion

of the well posedness of these problems.

The dispersion relations of (5), (6) and other equations are
studied elsewhere in this volume. There we see that (6) gives a good
approximation to the wave equation in a wider range of angles ( ??—)
than what (5) does.

We will here derive difference approximations to (5) and (6) and
analyze them with respect to accuracy and stability. The main purpose
is to present the structure of some stable difference methods. They
can then be changed in different ways to suit certain purposes. We
can have other coefficients in (5) and (6) and also often modify the
difference operators. In what follows we will think of the difference
equations as approximations of (5) and (6). It is of course also

possible to look at them as direct approximations of the scalar wave

equation.
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Let P? Xk be the discrete approximation of P (t,x,z) on a
b

mesh at the point ( tj’ Xy z" ) . In order to simplify the notation

we define some difference operators (unchanging indices are dropped).

_ k+1 "k .
D Pk - Ax ( Px )
P -P
X _ k k-1 .
D— Pk - Ax ( Px )
P -P
X _ k+1 k-1 .
PoPx T T oax (-2
( Dt p” ... denotes the analogous approximations of 22 .
+ 3 + b at’ 82’
n 1 n n nt+l
D, P. = — - - ~
25 " (Pipp =Py = Pypp) (=P )

We will also use a number of averaging operators

AR AL PR R

Q@) P = o P 4+ (1-20)P +a P
Q3 Py = 5 (Py+P.y)

DR AL S PR A e
Qs Py = '% ( -1 Pj+1 )

=]
N |-
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The differential equation (5) can now be approximated by the

following three schemes ( tj =T -3 At )

t., 2z _ vtand X. Z \'2 X X

(Do Dy = 2coss Do 04 - 3. @ By D )P =0 ™)
2 cos™H
t. z v_tanb Z. X _ v XX o0 o
( Qy(e)p, "D 2 cosd 33 D+ Dg 3, % DD DP L =0 (8)
2 cos 0
(9)
2
t_ .z v tanb Z_ X v At X, X _
(Q))D, D" =5 cose 4 Dy Dy 3, (%™ 17 D) Dy DRy s
2cos™ 6
and for equation (6) we will use
(DtDtDZ (o) _vtaneDthDz _ v2 Q. DXp¥p?
+P- 0 @ cos8 20 Do D+ 2 %D, D D -
4 cos™ B
v t ox_x n _
- 3, Do Py D) Py, =0 (10)
2cos™ 0

Let us write these schemes in the form of difference molecules with

the undivided differences

_ p:4 _ 2 X . %X
do = 2 Ax D0 s d2 = AX D+ D_
and with
e __At v tand o =-_At Az v
1 8 Ax cos8 2 8Ax2 COS3e
c =__A_£:_2_L__
3 8Ax2 cosze

Z . .
The axes have the direction I . We write the different t and
t

z levels explicitly only for (7')
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i-1 ... 11 -1 1
. ! 5 - '
J oeeeene : +4c1 1 1 d0 + 4c2 d2 a"
j+1 -1 1 1
n o+l n n+l n n+l
P11 -1 01 11
—— Q, (a) + ¢ : d, +c, (—— d, (8")
a1t P Pl 1) @ 20101 2
-1
b1 -1 -1 1| c, |7 |6
— Q,(a) + ¢ d. +-= d, (9")
ERE T Vg ] 0 6 |6 |5 2
I N ;
-1
-1) 1 1 ] -1 -1 1 -1 | -1
— + 1
2 -2 |y +2¢, dy+ oy d, + ¢, d, (10"
-1 | 1 -1 |1 -1 ] 1 1|1

The difference approximation (7) is explicit. We need to know the

n n .
i,k ° PO,k and Pl,k . Since every

difference is centered it is easy to check that (7) has local truncation

initial and boundary values: P

error of second order. That is, if the full difference operator is applied

to any smooth function P , which is a solution to (5), the result

will be of the order O (At2 + sz + Az2 )
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There are of course more sophisticated ways than using the order of
approximation to describe the accuracy. In general, a higher order
method is more accurate measured in different ways and requires fewer
points per wave than a lower order one.

The formulas (8), (9) and (10) are implicit. In each step a
tridiagonal system has to be solved. In (8) the truncation error has the

2

form O (At” + sz + A22 ) . The scheme (8) is more compact than (7)

and it gives a better approximation in the t-direction.

t d sl 53
e PP T 5o Py Y 3 Ry ) e
2 3
t = 9 At 97
DO P(tj) = 3¢ P(tj) + 6 3t3 P(tj) S
2 2
At 3
Q P(tj) = P(tj+l/2) + 2 atz P(tj+l/2) + ...
2 32
Q, P(t.,) = P(t,) + At" —x P(t,) + ...
3773 3 3¢

The t-discretization error is here a fourth of that in (7).

X

When a=0 , BX is replaced by DO and Bxx by D+ b~ . 1If
we take a =i%— and disregard the PXz term the approximation is of

-1
fourth order in x . This corresponds to the D+§ D__X (I + i%—D+? D_X )

approximation of 3 .
PP _—

For o = %- all =x-derivatives are replaced by the corresponding

2 X1

bilinear approximations. That is, 3X Ax X41 °

where X dis the

translation operator ( X P, =

X Pk+l ) If we discretize only in the

X direction we have:
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5 P vtan® 2 X-I P+ v 4 (X-I)2 P
tz 'k 2cosfB Ax X+1 "z "k 2 c0336 sz (X+I)2 k
X2-+2X-+I v tanb XZ—I
B 4 8tz Pk + 2 cosf 2 Ax az Pk +
2
v X -2X+1
+ 3 2 Pk <
2 cos™H Ax
Qs _p, 4yEad px o, L vV pxgpx,
24" "tz "ktl 2cosb 0 “k+1 9 cos36 + - Tk+l

In (9) we have used an idea from SEP-7, P. 137 to get an implicit

scheme which is fourth order accurate in t . As it is written it is

only second order in x and z . We can change the difference
operators to improve the approximation in x . This is discussed
later.

We finally approximate (6) with the compact and implicit scheme

(10). It has the truncation error O (At2 + sz + Az2

)
Let us now consider the stability of these difference equations.
We want to solve them with z as evolution direction. For each

n-level we also would like to calculate the new values recursively.

marching in the -t direction (i.e., for increasing values of j ).
We will limit ourselves to analyzing the stability of the schemes

first as pure initial value problems in 2z and then the stability of
one sweep in t when 2z is fixed. The latter corresponds to a normal
mode analysis of the full initial boundary value problem for infinitely
rapid increasing modes in the z-direction. We saw in SEP-7, p. 146,

that these two cases were essential.
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In order to show stability of the initial value problem we Fourier
transform the difference equation in t and x . The scheme (7)

will then have the form

~nt+1

2 i sin(~wAt) (P —lgn)-l- dic prtl _ pn

lsin(kxAx)(P P -

k Ax

_ 16czsin2( }Z ) ( elwAt §n+l + e—lwAt

Py = o0

k Ax
by

> )

(i(2 sin (-wAt )+ 8 cq sin(kXAx) -16 ¢, sinz(

k Ax

X an+l
2

Jcos(wAt) ) P =

sin(wAt)) -~ l6c2sin2(

k Ax

2 X
(3—)

( 1i(2 sin(-wAt) + 8c1 sin(kXAx) - 16 c, sin

k Ax
X

2

sin(wAt)) + 16 c, sinz( Jcos (wAt) ) P

This formula has the structure

( iA+B) P - (ia-p)P° (11)

where A and B are real. Hence, |Pn+l| equals [Pn] which

means that no Fourier mode can increase.

We now turn to the second question of stability in t for a
fixed z . When we have transformed in x and when we only consider
the nt+l level, (7) becomes

k Ax
i “n+l . 2 X o+l
sin( kXAx ) Pj 16 ¢, sin ( 5 ) Pj—l = 0

ntl o+l
- 8 14
Pj+l Pj—l+ 1cl

with the corresponding characteristic equation
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k Ax
X
2

SZ+8icl sin(kXAx)s— (l+16czsin2( )) =0 a2
The stability condition |s] <1 (]s|] <1 for coinciding roots)
is fulfilled for an equation s2 +ias+b =0 (real a,b)

if ]b] <1, ]al <1-b . Hence, we have stability if the following

is valid.
|1+16 c,| <1 |8c|<2+16c,
or
At A
R AZchf,i’Se ) Z'ZAztAZ?,V (13)
Ax"cos™ 6 Ax“cos™ 0

Let us change (7) a little to see how easy it is to get an unstable

scheme. For the last term we will now use the operator

It looks even more natural than the one we had in (7') and the trunca-
tion error is still of second order. We Fourier transform in x and

consider the n+l level.

k Ax

“n+l ~“n+l . , . 2, % cntl

Pj+l—Pj_l+(81cls1n(kxAx)—l6c231n( 2 ) )P:.| = 0
The corresponding characteristic equation is

5 2 kXAx

s +(81cls1n(kxAx)—16c231n ( 2 ))s -1 =0
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It has one root ls[ >1 for all combinations of At, Ax and Az ,
k_Ax

X
2

when sin” ( )# 0 , and hence it is unstable.

We do not write out the stability analysis for the schemes 8,
(9) and (10). For all of them we can derive the structure (11). It

is also possible to show that they are unconditionally stable in the

P

-t direction for a fixed =z if « < For (10) we may have a linear
growth in n which is consistent with the differential equation (6).
The only properties we need for stability in the x differencing
are. the following: The Fourier transform of the approximation of Bx
is pure imaginary and the transform of the approximation of BXX is
real and negative. Hence, it is easy to improve the approximation in

the x direction. We can, for example, use the following operators

(the superscript x dis omitted):

2
Ax
SX - D0 i D+ D_ DO (4th order)
sz -1
BX - D0 (I + —g—-D+ D ) (4th order)
2 4
Ax Ax 2
ax . DO 6 D, D_ D0 + 30 (D+;D_) D0 (6th order)
2 4
Ax Ax -1
3X - DO(I+——6——D+ D_ —1‘86 D+D_) (6th order)
sz 2
axx . D+D_— ETH (D+D_) (4th order)
sz -1
axx - D+_D_ (1 +~73T D+ D_) (4th order)
sz 2 Ax4 3
3XX - D+D_-— '—i2~(D+D_) +W(D+D_) (6th order)
2 4
Ax _ Ax 2.-1 .
axx D+D_( I+ 7 D+D_ 240 (D+D_) ) (6th order)
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We can also try to derive approximations where the truncation
error compensates for the error we get when approximating the wave
equation with (5) or (6).

We have tested four subroutines SM7, SM8, SM9 and SMI1O
corresponding to the methods (7), (8), (9) and (10). The code for the
algorithms are given on the last pages of this paper.

We checked the stability of these routines by using random initial
data. The L2—norm was conserved as the theory indicates.

In the following tables we compared the approximations with plane
wave solutions. This was done partly to check the programs and partly
to study the effeciency of the schemes. It is otherwise better to
analyze the accuracy in the transformed space when approximating plane
waves. The values preserved in Table 1 and 2 are for a special choice
of At, AMAx, Az, 6 and -%; and can only be used as a complement when
judging the quality of the methods.

In the test run we had 6=30, Ax=At=1, Az=0.2 and v=1
The number of points per wavelength (NPW) was 6 and 12, and the number
of steps in z was respectively 10 and 20. The initial values were
sin waves and the analytic values were given at the boundaries. We

had u-=—l—

17 in SM9 and SM10 . The normof the initial values was one.

We can see in Table 1 that the convergence from NPW=6 to 12 is
about a factor of 4 . That is what we expect from second order methods.
The scheme SM9, which treats several terms with higher accuracy, has the
best performance. The truncation error in time for SM7 1is four times
that of SM8 and so is the error we can see here. On the other hand,

since (7) is explicit it is faster and simpler to use.



TABLE 1
k!
B$. sin 5° sin 20°
NPW 6 12 6 12
SM7 .228 .069 3.75 1.42
SM3, a=0 . 057 .018 .932 .269
SM8, o =—115 .056 .011 .862 .237
SM8, a==%~ .058 .011 .709 .184
SM9 .009 .003 .266 .039
SM10 114 .038 1.93 .722

Lz—error (times 100) when comparing the approximations with the

Lz—error (times 100) when comparing the approximations with the

solution to the scalar wave equation.

analytic solutions of the corresponding differential equations (5)
or (6).

TABLE 2
kl
= sin 5° sin 20°
NPW 6 12 6 12
SM7 .248 .093 6.14 4.07
SM8, a=0 .077 .041 3.13 2.77
SM8, a==i%- .079 .034 3.10 2.75
SM8, a= %— .077 .035 3.03 2.71
SM9 .026 .020 2.62 2.68
SM10 .131 .051 3.15 2.19

107
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Table 2 shows that the main error for NPW=6 and 5° comes from
the discretization of (5) and (6). For NPW=12 and 20° it is
the other way around. The error originates from the difference between
(5) or (6) and the wave equation. There is almost no improvement from
SM8 to SM9 . Here the third order differential equation (6), used
in SM10 starts to pay off.

In the final sequence of tests we propagated a wave form (Fig. 1)
to the surface. 1In Fig. 2, 6 we used SM10 and in in Fig. 10, 15
the algorithm SM9. We then migrated these synthetic seismograms on
twice as coarse a grid. This was done to get a more realistic
situation where the truncation errors in the forward and backward
problems did not cancel.

The computations were carried out in the slanted frome with
6 =20° , a==i%—. The grid sizes are displayed fairly well in the
plots ( v At Az /Ax2 = 0.2) . The initial values were products of

sine waves in their area of support.
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Fig, 1. 1Initial wave form,

Fig. 2. SM10, surface data from =z =20 (—Azi) .






Fig. 6. SM10, surface data from z=8 .
ig. 7. ser sampling of data from Fig. 6.
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Fig. 8. GSM10, migration to 40 Az .

{
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Fig. 9. SM10 (without PtX7—term), migration to 40 Az .
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Fig. 15. SM9, surface data from =z =
Fig. 16. Coarser sampling of data from Fig. 15.
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Fig. 19. SM7, migration to 40 Az .

The schemes (8) and especially (9) did a good job in restoring
the original picture. We can also see that the skew term Ptxz in
(10) had some positive effect. These plots mainly show the discreti-
zation error. It would have been comparatively less favorable to

the methods based on the second order differential equation if the

seismograms were produced by the wave equation.
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