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The Effect of Discrete Ax on Wave Migration Accuracy

by Walter S. Lynn

The migration of seismic data using the wave equation requires
the use of approximations to the wave equation. Which approximation
to use is usually a compromise between accuracy and cost. There are
two errors involved with wave equation migration. One is caused by

anisotropic dispersion, which means waves traveling in different

directions propagate at different velocities. This is an artifact of
our approximations to the wave equation. The other error is due to

frequency dispersion which is caused by undersampling the data.

In this paper we will examine the effect of sampling the x dimension
on the accuracy of the 15° and 45° approximations.

The results are displayed in several ways. We will first examine
the effect on the dispersion relation of the exact one way wave equation.
Next we will see what happens to the dispersion relations, group
velocities and travel time curves of the 15° and 45° equations.
Finally, we will examine the x and time errors ("knots") in
migrating an ideal hyperbola. There is a considerable amount of
overlap in the information displayed in each type of plot. As a
result something which might be seen as confusing in one figure can often
be explained by referring to its counterpart in another figure.

The effect of discrete Ax on the exact one-way wave equation.

Fourier transforming the exact wave equation gives the dispersion

relation for upcoming waves
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Equation (1) describes the well known semi-circle in kX s kz

space. To obtain the necessary approximations to the wave equation we
replace the square root in (1) by various rational fraction approxima-
tions. When the x coordinate is discretized, the axx term in the

wave equation becomes § /Ax2 , where 6 = (1, -2, 1). If we
XX XX

~

If we denote the effective wave number in the x direction as k ,

then Fourier transforming both operators gives

k Ax

f<=—2—sin(2 ) (2)

Ax

An alternative relation between k and k which is given by approxi-

mating ik ! with the bilinear transform is

2 k Ax
k = = tan ( > ) 3)

The derivation of these equations is given in Claerbout's book on pages
221-222. The effective horizontal wave number is now periodic with k .
Whether equation (2) or (3) is to be used depends upon the finite
differencing scheme. It is also possible for i to be some combina-
tion of (2) and (3).

Substituting (2) and (3) into (1) gives the effective vertical

wave number in terms of k

vk
z 2v. ., wAx vk, 2 ,1/2
W = - [ l-((A)AX Sln(zv U))) ] (43.)
and
vk, 2v whx vk, .2 ,1/2
- - - [1- (BZE tan (55 <5))7 ] (4b)
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The dispersion relation is now periodic with a period of m = iéL1T .

whx

Figure 1 shows the graphs of these curves over a range of m's . Note
the different direction of departures from the ideal semi-circle of the
sine and tangent relations for decreasing m . In the former case,
the limbs of the semi-circle are stretched out and begin to overlap at
m=7 . In the latter case, the limbs are compressed towards the kz
axis.

To see where we stand a typical value for m is

2 (3000 m/sec ) m _
21 (60 hz) (50 m)

This is well below the lowest value of m in Figure 1 and indicates a
gross undersampling in the x direction. This creates a severe aliasing
problem in the spatial frequency domain. We will see shortly that the
problem becomes much more severe when we approximate the wave equation.

Effect of discrete Ax on approximations to the wave equation.

Various orders of approximations to the one-way wave equation are
obtained by different orders of rational approximations to the square
root in (1). We will now generalize to the slant frame coordinate

system defined by

x + z tanb

b
il

and

t' =t + = cosh - = sind
v v
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Figure 1. The effect of sampling =x on the dispersion relation for the exact

. . . . 2v ,
one-way wave equation. m is a dimensionless number equal to oz 2 which

vk
is the period of the dispersion relation. Equation plotted is —55 =
2,2
vk® ., 1/2 ~ 2 . kix a2 k Ax
-(1 - 5 ) for a) k = i Sin (_f__) and b) k = e tan (—5-—) .

w
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Derived below are the necessary adjustments to Claerbout's program

(SEP-8, page 29) to account for the discretization of the x

start with the following definition and relations:

1]
Y aT%g%E = ( %% - sin® ) / cosh
k' T(Y) w'cosH
Z B(Y) v
and
v - I(¥) wcos?H _ W
kz B(Y) v + k tand v cosb

These equations are derived by Claerbout on page 21 .

define ~
v k'

I | \
¥ = _ 2v . (vk w' Ax

= sin
w'cosHd W Ax cos 2v

2v
w Ax cos ©

)

= ————— gin [ ( %%-—sine)

The effective vertical wave numbers are given by:

ﬂ, _ T w' cosb
z B(Y) v
and
~ 0
ko= ) weosh g - 0
Z v v cosf

B(Y)

axis.

For discrete

w Ax
2v

]

(5a)

(5b)

In order to display the group velocity and travel time curves

we need the following partial derivatives:

k' k! ok ok
z z z z
dk' 7 Bw' ’* 3k ’  dw

We

X



A preliminary step is to evaluate the partial derivatives of Y

respect to k', w', k and w . These are

Y _ v cos (vk' w'Ax)

ok' w'cosB w' 2v ?

oY -Y

T

Y vk , w Ax

5%k  wcosH cos[( w sinf ) 2v I,

Y _ =Y tanb vk . w Ax
Y " cos [ ( w sin®d )-557 1 .

The necessary partial derivatives are obtained by differentiating

(5a,b) with respect to the desired variable and using equations (6a,b,c,d).

Thus,
1 ~
;v _ akZ _ 3 (T ) 3Y w' cosh
v = aor = = (%) T
k ok 5y B ok v
° 3 T vk' w'Ax
s;r = —=(3)cos (— )
k 5y B w 2v
A'
" ok, - Iy _é.(I.) Y ] cosf
w' dw' B 3§ B dw' v
S - [ T_5 .3 I, cos
s - e _ a1y Blucose ,,
k ok 8y B ok v
” 9 ,T vk , w Ax
S, = = (B Ycos [ ( o sinf ) 7 1 + tan 6 ,

with

(6a)

(6b)

(6c)

(6d)

(7a)

(7b)

(7¢)
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and

9Y , cos® 1

e 2 _ T, 98 T
w dw [ B to 8§ (B ) oW 1 v v cosf

~

w Ax 11} cosf

- I _ 9 T, 3 kv 0 y08x
= [ B = (B Y){ Y + tan® cos [ ( — - sind ) 5o -

w 9Y

1
v cosf (7d)

A similar sequence of steps leads to the following expressions if we

2 k Ax
use kx = 5y tan (—E—-) s
v _ 9 T 2 ,vk' w'Ax
Sk' - A(B)/ cos (wv 2v ) s (83)
oY
- T S 3 LT 0sH
seo= [F-Y (51, (8b)
oY
s 2Ly cos® (o oine).BE 1 4 pane (8¢)
k B w 2v
~ oY
and
5 = T _ o T 7 2 vk . k Ax cosf
w [ B = (B) { Y+ tand / cos“ [ ( " sinb ) 7;7-] ~
oY
1
" v cosf (8d)

Figures 2 (a,b) show the necessary changes to subroutine EVAL on
page 29 to calculate these derivatives for the sine and tangent approxi-
mations.

We are now in a position to examine the effect of discretizing the
x axis on the phase velocity, group velocity and the x vs. t

travel time curves.



30

Figure 2a. Modifications to subroutine EVAL for k = i%-sin (
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SUBRUUTINE EVAL(THETAZ N, T,8, SINTH, S, 511, S, 30741, SPK, SP)
DIMENSION T(20),B(29) ,&*
SINZ=SIN(THETAZ) 2V
CUSZ=CUS(THETAZ) wox
TANZ=SIZ/C0S2Z

Y=SIHNTH=-SINZ

YHAT=SP*TAN(Y/SP) /CUSZ deﬁnﬁhon of 9
COSY=CUS(Y/SP)

CUSY2=COSYw*2

TUP=0

BUT=0

DO 30 I=1,0

[={i=1+1

TUP=T (1R)+TUP*YHAT } substidute ¥ for Y

S=CUSZ*TUP/BUL+TANZ*SINTH=-1./CS7Z
TUPD=0
BUTD=0
DU 40 I=2,1l
[ii==1+2 A
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DHAT=TUPD/BOT=-TOP<DUTD/ (BUT*3UT)
Sr=CUSZw (TUR/BUT=DRATH (YHAT+TANZ/CUSY2) ) =1 ./81)57 eqn 84
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Figure 2b. Modifications to subroutine EVAL for k = 2 tan ()



79

Following equations (35 a,b,c) on page 26 we have

(8) = (s, =5.) (9a)
(x',6")= (s, =s!,) (9b)
(%, -z )= (_;k/;m’ _1/;w ) . (9c)

For the time being, we will restrict ourselves to the second and third
order (15° and 45°) approximations and the case 6=0 .

Phase velocity.

The dispersion relation for the exact one-way wave equation is a
semi-circle as shown in Figure 1 (for m=« ). If the operator
éxx =(1, -2, 1) dis used for Bxx then the effect on the dispersion
relation is as shown in Figure 3. TFigure 3a represents the effect of
discretizing x on the 15° approximation and Figure 3b, the 45°
approximation. The range of %f- is -4 to 4 for this and subsequent
figures. Curves for 5 different m's are plotted on each figure with
m=« representing the best fit to the exact wave equation.

The effect of discretizing x can best be seen by comparing
Figures la and 3. Consider the curve for m = 1.37 and recall that
m 1is the periodicity of the dispersion relation. TFor the exact wave
equation (Fig. la), the dispersion relation diverges slightly from the

vk
ideal semi-circle and —BE- becomes imaginary at %% =+ 1.132.

For the 15° equation (Fig. 3a), the aliasing effect becomes more severe

and the curve diverges even more from the ideal semi-circle. That

v'fcz vk

- is real for all o is a property of the approximations to the
v

. z . - . . .
wave equation; however, whether - 1s positive or negative is highly
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Figure 3. Dispersion relation . Vs- for range of values of m “oix "

for a) the 15° equation and b) the 45° equation. Effective horizontal wave

e v 2 . kix
number is k = iy Sin (7?—

implies no aliasing and no frequency dispersion. The asterisks represent

%§-= +1land ideally should lie on the %%- axis. The semi-~circle is the

) . Numbers beside arrows are values of m . m= «

dispersion relation for the exact wave equation. Compare with Figure la.
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dependent upon m . The higher order 45° approximation (Fig. 3b)
fits the exact dispersion relation (m=«) better for lower values of
m than the 15° approximation. However, the rate of departure from the
m=* curve is more rapid after m becomes less than .71,373. In
other words, although the m=271 curves differ substantially for the
15° and 45° approximation, there is little difference in the m=m curves.
Thus, if m< ~7m , there is little gained in going from the 15° to
the 45° approximation. Note that the typical case of m=1 is worse
than any of the cases plotted.
The effect of using the bilinear transform to approximate k
is shown in Figure 4. For the 15° approximation the effect of decreasing

~

. . . . vk . .
m 1is to pinch the dispersion curve towards the 4 axis, which
w
actually is the correct direction to better approximate the semi-
circle dispersion relation of the exact wave equation. For m <~ 27 ,

the dispersion relation lies inside the ideal semi-circle.

Group velocity

Consider a point source at (x=0, z=0) in a homogeneous media
of velocity v . If we take a picture of the wave front on time t=1
we will find a circle of radius v , or a semi-circle in the case of
upgoing waves. Using our approximations to the wave equation we can

also find the wave front by plotting (x, -z ) = tv (~sk/sw, —l/sw ),

- akz . akz
where sw = o and sk = T
For Gxx = (1, -2, 1) we need only equations (7c¢) and (7d).

The wave fronts are plotted in Figure 5 for both 15° and 45° approxi-

mations and for several m's . Consider first the curves for m=w .
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for a) the 15° equation and 6? the 45° equation. Effective horizontal
wave number is ﬁ = i%-tan.( Eéﬁi) . Numbers beside arrows are values of m .

m=c« implies no aliasing and no frequency dispersion. The asterisks represent
%%4=t]_and ideally should lie on the %%- axis. The semi-circle is the dispersion

relation for the exact wave equation. Compare with Figure 1b.
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Note first of all that the wavefronts fit the ideal semi-circle out to
6=15° and 45° din Figure 5a and 5b respectively. Secondly, note
that all of the energy lies above the x axis as it must, since we
can only propagate energy in one direction with our one-way equations.
The asterisks indicate rays which ideally should be traveling in the + x
direction (i.e. %§-= 1 ). Points which do not lie between the asterisks
on a given curve represent waves with k:>%-. In the exact wave equation
waves with k3>%- are evanescent. We see, however, that these waves
are propagated by the approximations to the wave equation and are usually
attenuated by fan-filtering or by means of numerical viscosity.

The effect of decreasing m 1is to condense the wave fronts
towards the =z axis with the result of deteriorating the fit to the
exact wave equation for smaller 6's . Referring ahead to the knots
in Figures 9 and 10, we see, for example, that for m=7 , the 15°
and 45° equations maintain 1% degree of accuracy in x only out to
6=12° and 6=15° respectively.

If the bilinear transform is used to take the x derivatives
then the group velocity curves are obtained by inserting equations (8c)
and (8d) into equation (9c). The results for the 15° and 45° equations
are plotted in Figure 6. A comparison with Figure 5 shows that the effect
of decreasing m is opposite from above, i.e., as m is decreased, the
energy is pushed away from the 2z axis. With reference to the knots in
Figures 11 and 12 for m=n , the 15° and 45° equations maintain an
accuracy in x of 1% only out to 6=13° and 6=11° respectively.
The cause for this apparent ambiguity is due to the opposite direction

of the anisotropic and frequency dispersion errors and will be discussed

shortly.
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Fig. 6. Wavefronts in x,z space for a range of m's for a) the 15° equation

and b) the 45° equation. Effective horizontal wave number is k = fltan(l%fﬁ)
Numbers beside arrows are values of m . Asterisks denote waves which ideally
should be propagated horizontally in the + x direction, i.e., %§-= +1.
The semi-circle is the ideal wave front. Values of %§~ between -1 and +1

lie between asterisks on upper portion of curves.
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Fig. 5. Wavefronts in x,z space for a range of m's for a) the 15° equation
and b) the 45° equation. Effective horizontal wave number is k = i%-sin(l%§§).
Numbers beside arrows are values of m . Asterisks denote waves which ideally

should be propagated horizontally in the + x direction, i.e., %§*=i 1.

The semi-circle is the ideal wave front. Values of %f- between -1 and +1

lie between asterisks on upper portion of curves.
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Travel time curves.

The travel time curves from a point scatterer for the 15° and 45°

equations are shown in Figures 7 and 8 for k = i%-sin.(gé?s) and
iy 2 k Ax . . .
k = Z;—tan (—E*) respectively. These curves are in the unprimed

coordinate system. Going to the slant frames involves only a time
shift since 6=0 . Because their character is so much like the group
velocity curves we will leave these to the readers inspection. For
reference, it should be mentioned that the asymptotes of the ideal
travel time hyperbolas slope at angles of + 45°

Timing and distance errors.

We turn now to a final representation of the errors induced by
sampling the x coordinate. Let Ax and At be the distance and timing
errors caused by anisotropic and frequency dispersion. Claerbout, on

page 12 , has shown that

2

(AX, At) = z(_ Bk’

N
aw)(kz kz)
where we have added a hat to k; to denote that this is the effective
vertical wave number of the jth approximation. kz is the ideal
vertical wave number from the exact wave equation. Ax and At are
functions of the angle of propagation, 6 , and can be thought of as
the errors in migrating a true hyperbola.
. ° . - 2 . kix
Figure 9 shows Ax vs. At for the 15° equation for k = Z;-31n(—5—)

The points plotted are at 4° intervals. The full scale range in errors

is + 1% for At and + 3% for Ax . Note that positive At is down.
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15° equation
X
a
t=0
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b x
Fig. 7. Travel time curves due to point source for range of m's for
a) 15° equation and 6) 45° equation. Effective wave number is k = i%sin(.&éyi).

Numbers beside arrows are values of m's . Asterisks denote waves which
ideally should be propagated horizontally in the + x direction. Slope of
asymptotes ideally should be + 45°. Arrivals outside of asterisks are

evanescent waves and should be attenuated by fan filtering or numerical

viscosity. Compare with the wave fronts in Figure 5.
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15° equation
x
a
t=0
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b X
Fig. 8. Travel time curves due to point source for range of m's for a) 15°
-~ A
equation and b) 45° equation. Effective wave number is k= Zé; tan.(szs) .

Numbers beside arrows are values of m's . Asterisks denote waves which
ideally should be propagated horizontally in the + x direction. Slope of
asymptotes ideally should be + 45° . Arrivals outside of asterisks are
evanescent waves and should be attenuated by fan filtering or numerical

viscosity. Compare with the wave fronts in Figure 6.
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Figure 9a is for m=~» (i.e., continuous x ) and thus represents the
errors due to anisotropic dispersion alone. Figures 9b-d are for
m=4m, 27, and T . The movement of the box for a given angle, 6 ,
thus represents the error induced by sampling the x axis. The plots
show that the direction of error is such that both Ax and At
increase with decreasing m .

Figure 10 is the same plot using the 45° equation and shows a
similar result. Note the higher degree of accuracy.

Figures 11-13 are for i = i%-tan (E%ES) and are a little more
interesting because of the opposite direction of the errors caused
by anisotropic and frequency dispersion. Consider Figure 11 which is
for the 15° equation. Figure lla shows the error due to anisotropic
dispersion alone (i.e. m=~ ). For the purpose of discussion let us
follow the progress of the point corresponding to 6=12° as m is
decreased. From the computer output from which the plots were generated

we have the following table:

15° equation 6=12°

o At Ax
m 0.00073 ~0.00464
b 0.00069 ~0.00389
2w 0.00057 ~0.00162
T 0. 00009 +0.00779

.87 -0.00021 +0.01521

A similar result holds for the other 6's. Hence, decreasing m moves
Ax and At Dback towards zero total error and beyond. That is, the

Ax , At  error due to frequency dispersion works against the Ax , At
error due to anisotropic dispersion and begins to dominate at some value

of m , depending on ©
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Figure 12 shows the analogous plots for the 45° equation.
However, because the anisotropic dispersion error is smaller due to the

better approximation, the frequency dispersion error begins to

dominate at larger values of m . Recall in the group velocity discussion

that we mentioned that the Ax error is less than 1% for 6 < 13° for
the 15° approximation and 6 < 11° for the 45° approximation. This
ambiguity is thus explained by the above observation.
Knots can be computed for non-zero 6's also. Figure 13 shows the
o - . - 2 k Ax . ,
knots for the 15° equation with k = Z;-tan (—5—-). The dispersion

relation is chosen to fit exactly at ©6=20° . The results are

analogous to the previous plots and are left to the reader's inspection.
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Fig. 9. Ax and At errors (knots) in migrating an ideal hyperbola using the
15° equation for various values of m . Effective horizontal wave number
is kAx Boxes are at 4° intervals and indicate the error in

< sin (—‘2—') .

migrating the waves from that direction.

due to anisotropic dispersion alone.

Ax

respectively with At

Following a box for a given angle as

The knot for m=

Vertical and horizontal axes are

positive down.

Full scale is + 1% in At
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gives the errors
At
and

m decreases shows the

+ 37 in Ax .

frequency dispersion. See text for example.
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m= 27 m=T7

28° ~-28 20° -20°

c d

Fig. 10. Ax and At errors (knots) in migrating an ideal hyperbola using the

45° equation for various values of m . Effective horizontal wave number is

k Ax

2 . . . 1 .
k = g Sin (—E—) . Boxes are at 4° intervals and indicate the error in

migrating the waves from that direction. The knot for m=o gives the errors

due to anisotropic dispersion along. Vertical and horizontal axes are At and

Ax  respectively with At positive down. Full scale is + 1% in At and

+ 3% in  Ax .

Following a box for a given angle as m decreases shows the

frequency dispersion. See text for example.
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20° -20° 20° -2
m= 27 m=T
12° ::::ffff:::=#S_ABIEE_?Eﬁfzzzﬁi;F::i!
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Fig. 11. Knots for 15° equation with effective horizontal wave number

_ 2 k Ax
k = = tan (—ji-).

between m=T

Note that the limbs of the know have changed sign

and 2w .

See Figure 9 caption for other details.
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Fig. 12.
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Same as Fig. 11 but for 45° equation.
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Fig. 13. Example of knot when dispersion relation is exactly fitted at a
non-zero angle, in this case for 06 =20° . See Figure 9 caption for

details.




