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16 January 1976: se
Well-Posedness of One Way Wave Equations
by Bjorn Engquist
From the scalar wave equation

1
= = +
v2 Ptt Pxx Pzz

with the corresponding dispersion relation

we get the dispersion relation for the one way wave equation
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In a moving coordinate frame (t' =t -2, k =%k' +& s —w' is
v Z z Vv

the dual of t' ) we have the following relation if the primes are

dropped

w
p- (2)

We want partial differential equations (PDE's) which have dispersion
relations approximating (1) or (2). We also want the PDE's to be well posed

as initial value problems both in z and t .

What do we mean by well-posedness, eg., when 2z 1is the evolution
direction? In general, we want a reasonable norm of the solution to be
bounded by a constant times the norms of the initial values. The constant
may not depend on w or kX . What we more explicitly mean will become

clear in our examples. We will also consider a weak form of well-

posedness: After Fourier transforming in t and x s
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the solution is not allowed to grow exponentially in ¢ and kX . If
the solutions are of the form . exp (c(w,kx)z ) then the real part of c¢,
( Re(e) ), shall have an upper bound. We have an i1l posed problem if -Re(c)
can be arbitrarily large. The situation is analogous with t as evolution
direction.

The square root in (1) and (2) can be approximated by a polynomial or
a rational function. We will see that a three term Taylor expansion of
the square root generates PDE's which are not well posed as initial value
problems with t as evolution direction. 1In a paper to be published,
Francis Muir uses continued fraction approximations to produce approxi-
mating PDE's of any order. We will here show that his approach generates
equations which do not suffer from the same weakness. Finally, we will
consider one way wave equations in slanted frames.

A natural beginning when approximating the square root is to use

a Taylor expansion

(1—x2)1/2 _ ¥ X X

vk

When this is applied to (1) and (2) where we expand around =0

we get respectively (the second equation corresponds to primed coordinates),

v2 k 2 vk 2 v3 k 4
K = o (1 - X )1/2 w X X
z v 2 T v 2w 8 3 T
W W
V2 k 2 vk 2 v  k
k ——@-(l— x)l/Z_Q _ X X
z v 2 v 2w 3 o
W 8w

The corresponding PDE's for second and third order approximation are

(equation (5) and (6) are in the primed coordinates),
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1 v _
Ptz + v Tttt 2 Pxx =0 (3)
1 v v3
Petez 77 Peeee ~ 2 Prexx ~ 8 Fxexx - O (4)
V —
Ptz T2 Pxx =0 (5)
v v3
Ptttz - §~Pttxx - ig-Pxxxx =0 (6)

It is easy to see that all these equations are well posed if =z
is the evolution direction. After Fourier transforming in x and t

they are of the form
PZ (w,kx,z) = —i,a(w,kx) P (w,kX,z)
where a(w,kx) is real. This implies
[P (w,kz) | = |P(w,k,0) |
and from Parseval's relation we get the energy conservation,

[eC, 2]l = [[2C,,0)]] (7)

( Here || || denotes the L, norm . )

2

Now let t be the evolution direction and note that, if the PDE is of

order n in time, we need n initial conditions. The values of
3 an-l
o n-1

at t=0 are assumed to be given.

We will see that equations (3) and (5), but not equations (4) and
(6), are well posed as initial value problems. TFourier transforming in =x

and =z gives ordinary differential equations in t . 1In order to check
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the growth of their solutions we consider the corresponding characteristic

equations ( Bt-+s s Btt->sz s -+« ). They are respectively,
) V2 kX2
s +ivkz s+———2——— = 0 3"
4 3 Vzkxz 2 V4kx4
s +inZS +——2———S —8— = 0 &)
vk.x2
s — i Tk = 0 (")
z
3 kaz 2 v3k}<;4
_ 1 = '
s i3 kz s"+1i g kz 0 (6"

If a characteristic equation has the roots 81> e+ S5 then
the solution to the corresponding ordinary differential equation can be

written in the general form

- n
P(t, kx, k) = '21 Aj exp(sj‘t)
J
when the roots are separate. The coefficients ( A, = Aj(kx,kz)) are

determined by the initial conditions. It is necessary for well posedness
to bound the growth of the exponentials, i.e., to have an upper bound on
the real part of sj : Re(sj) < C, where C 1is independent of kx
and k .
z
Let us consider (3'). The characteristic equation has two imaginary
roots which are separate for kxkz #0 .

k k 2 k 2

s CE e e

> )

Hence, there is no expenential type of ill posedness. In order to

get an explicit bound of the solution we write its general form in the
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following way
P(t) = A(exp(slt) + exp(szt) ) +B (exp(slt) - exp(szt) )
where A and B are determined by the initial conditions ( at t=0 )

24 = P(0)

A(sl+sz) +B(sl—sz) = l;t(O)

_ RO
A =7
Pt(O) sl+s2 A
B = 5T 2(s,-s,) £(0)
1 72 1 72

This gives us (after multiplying with exp(—s2 t))

exp((sl-sz)t)+l (s1+sz)(exp((sl-sz)t)-l) N

P
e < | i T I 2 |
[eXP((Sl—Sz)t) -1 | R lsz exp((sl—sz)t)-sl| ~
+ P
Isl—szT I t(o) I : [Sl_szl lP(O)I +

+ £ [0 < [PO)] +t [P (0) ]

and we have the estimate

[PeCes s DI = J1eco,, Il +effp (0, , )]

Consider equation (4'): "For kz—>0 the equation approaches

(SZ)Z+V2kx2 2_V4kx4 = 0
2 ° 8 B

2 _ 2.2, 1 1 ,1.1/2

s. = vk (-3 f () D)
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One root s = %1kxl ( /5—:1)1/2. There is no upper bound for
Re(s) and (4) cannot be well posed.

Equation (5) is well posed since (5') has only one imaginary root.
We get an estimate analogous to (7).
3

Considering equation (6'): TFor kz = kX and kx->w the

equation approaches

3 v3
s +1i—=k%k = 0
8 x

The real part of one root -« when kx-+w and hence (6) is not well

posed.
We have seen that certain Fourier modes in the solutionsto (4) and
(6) grow arbitrarily fast. These problems cannot be approximated with
stable difference approximations.
Let us now turn to rational approximations in hope for useful
higher order equations. The following approximation of the square
root
1 -

(1—x2)1/2z

1-

I e E [
[\~
N
o
(O8]
X

has been used earlier in SEP to produce PDE's corresponding to (1) and

(2)
v2 1 3v
Pztt - TT-szx + ;'Pttt - j;'Pxxt =0 (8)
v2 v
Pztt - TT-szx - E_Pxxt =0 9

Let us look at the PDE in the primed coordinates (9). It has the

characteristic equation
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vk 2 vk 2
s2 i X s + X = 0
2k 4
4
with the roots

'vkxz V2k.x4 vzk.x2 1/2

S=i(4k'_l_'( 2+4))
16 k

This is analogous to (3') and we get the estimate
lece, . >l < e co, , Il +e J 2 Co,, )

As 1in the earlier problems this one is energy conserving in the =z

direction.

Equations (8) and (9) can be regarded as the third order formulas
when using continued fraction approximation of the square root as

suggested by Muir.

(l—X2)1/2= _X5

Denote the finite approximation Sj = Sj(Xz)

2 T,
81 = 1- fi’é‘ (=1+ Fti )

A j+l (10)
Sl = 1

For T and B we have
2

T _ %2 i -X" B
B. T, 2B.+T,
A ot J



By using the same formulas for Tj /Bj » we can derive
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(11)
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Let us apply these approximations to the one way wave dispersion

relation in moving coordinate frame (2). From

v2 k 2
K = 9_( 1- pre )1/2 w
z v 2 v
w
we get
w T,
k -—= = 0
z v B,
J
‘ 2 2. .2 Vzkxz
T, =T.(X"), B, = B.(-X"), X = ——
( j J( ) 5 J( ) wz )

As our dispersion relation we will use

= - 93 S =
D, (=27 (k, By = T,) 0

We can now use the relation (11)

w]
il

oW 3+l W -
j+1 (-13) (k, Biv vTj+l)

. . Wy] _w
- i ((-1 7 (k, B, v B+

h|
22
X w_ s wyj-1 _w =
P (AT T (R By g - By )
vzk.x2
= ~ jiw Dj + A Dj—l
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The corresponding recurrence relation for the PDE's ( Dj(P) =0)

given by Muir will hence be

2 .2

- 9 v 9
Dj+l(P) = 3 Dj(P) i 5 Dj—l(P) (12)
ox
Dl(P) = Pz
D.(P) = P _ -2p (13)
2 zt 2 Txx
v v2
( DB(P) - ztt E_Ptxx - 7T-szx )

If we do not use the primed coordinates, but stay in the original
coordinate frame, we will have the same recursion relation (12) but other

starting values.

Dj(®) = P_+VEP

2, ao
2

I
+
<
jav]

DZ(P) XX

We will now show that the equations generated by (12), (13)
and (12), (14) are not exponentially ill posed like (4) and (6). As
before, we Fourier transform in x and t and want the corresponding
characteristic equations to have pure imaginary roots. These equations

are given by ( kz £ 0)

v2 kx2
= — '
dj+l sd.j + A dj—l (az"
v kxz
d2 = s -1 K
2
(13")
v k 2 v2 k 2
d = 32 - 1i X s + X
3 2k 4
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d = s+ 1iv k
z

2 Kk 2 (14")

[aN
it

s2 +1iv kzs +

We see that for kx, kz # 0 both (13') and (14') have the

structure
dl = s -1a
d = 52 - ias + b
2
where a and b are real, b>0 . ( In (13') we actually started

with j = 2 and 3 .) To simplify the proof we make the change of

variables

and get a

Here a,
show that

are all r

d, = -i 3 e, s=1ir
i (-1) j

recursion formula for the polynomials ej(r)

ej+l = r ej -c ej_1 (15)
e, = r - a
1 (16)
e, = r2 - ar - b
v2 k 2
X

b and c¢ are real b,c>0, (c = ). We want to

4
the roots of ej(r) = 0 , which we call réq) » k=1, ..., j,
eal.

D

@ 3_(§E+b)1/2
1.7 2 4
e 24 33-+ b )l/2

2 ) 4
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2 (M _@
2

We have r;0 < ry and we will see that this type of

relation is valid in general.

Let us assume that the conditions

r{j) < rfj—l) < réj) < vee < r§i11) < rgj) a7

are valid for the roots of ej_l(r) = 0 and ej(r) = 0 . This

implies

(3)

- ce r. < 0
j )

e

e, r, c e,
J+1( J ] J -

5-1¢

since the coefficient in front of the leading power in any ej(r)

, 6D

is positive, and hence, ej_l(r):>0 for r j-1

Similarly, we get

e (rgj)) > 0

jH1 -1
()
¢4 (f5=) < 0
. (r(j) >0 if j dis even
j+11

<0 if j 1is odd
Further, if K 1is large enough we have

>
ej+l(K) 0
<0 1if j 1is even
e.,.(-K)
j+l >0 if j is odd
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From this we see that ej+l has j+l1 real roots and relation (17)

is valid when j~j+1 . By induction, all ej(r) = 0 have real roots.
In the same way as before it is easy to check that the equations

generated by (12), (13) and (12), (14) are energy conserving with z

as evolution direction.

v k
x

w
v k
X . .

¥ ginb . See

So far we have made expansions around =0 . We will now

consider approximations of slanted waves,

Claerbout, SEP-7, p. 30 for the appropriate coordinate transformation.

x' = x + z tanb®
z' = z
z .
t' = t + % cosd - % sind
v v
sinb
ko= k' 4o 22
X X v
6
k = k' + k' tanf - o' 252
z z x v
w =

The dispersion relation for upcoming waves

2
_ w” 2 .1/2
kz = - 2 kx )

will in the new coordinates become

2 .
Ky 4k tand - o 250 o0l gy 8100 20172
z b < -
v
2.,2
v© k! 2v sin® k'
= w' _ 1 X - 1/2
= - cosf (1 5 ( = + : ))

cos B w w
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We can here use the continued fraction approximation of

the square root to produce rational dispersion relations; see Claerbout,

V'kx v k'
SEP-8, p.20. The value of - sinb = 7;;‘ is regarded as small.
]
k' + k' tand - o' cosb _ _wl cos8 S,
z X v v 3j
where 2 2
X2 9 2v tanf k; v k;
Sqa1 T I 0 X T T YT 2 (18)
cos O w

From (18) we can derive a recursion formula for the corresponding

PDE's in an analogous way to what we did in the case 6=0 .

D) = 2 b (pry 4 (Ltame 3 A LA,
. - v . 1 | -
i+l at 3j 2 cosf 9x' ot 4 c0326 %! j-1
There are different ways of starting the recursion (18). In
SEP-8, p. 23, Claerbout uses
v tand k;
Sp = 1- cosf w' (19)
The PDE's corresponding to 82 and S3 will then be
6 v
1 _,_lﬂ_ v ¥ S A— 1 =
Pt'z' 2 cosb Px'z' 3 PX'X' 0 (20)
2 cos™8
' v tanb v2 v
l!l+_—~_P"v|__-P'|_|v+_ P, , , =0 (21
t't'z cosf "t'x'z heosle X'x'z ZCOS3e t'x'x

In earlier reports different equations in slanted coordinates have

been given. Estevez derives the PDE



2
v

P'v.y, = O (22)

0
P', CF v tan P', L+
t X'X

Z cosO X'z 2COS3e

in SEP-5, p. 30, and in SEP-7, p. 32, Claerbout derives

Pé' v b — P = 0 (23)

These equations can be generated from S2 when Sl is respectively

2 v tanbd k'
X

Sl = 1- cosh w' (24)

Sl = 1 (25)

Formula (19) gives the closest fit to the square root.

Finally, we have the question of well posedness for the problems
in slanted coordinates. All PDE's mentioned here have characteristic
equations of a form we already have studied. Equations (20), (22)
and (23) are first order in t and =z , and like equation (5),
they are energy conserving in both these directions. Equation (21)
is energy conserving in 2z . It is also strongly well posed as

an initial value problem in t since the characteristic equation

vtanﬁk; v k'2 v© k
s + = 0
2 cos ek; 4 cos”®

32 + i(

cosf

have the same structure as (3'). The same arguments are valid if

we change z to -z or t to -t .
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