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Spectral Balancing

by Jon F. Claerbout

A collection o£ seismograms may be said to be spectrally
balanced if they have been filtered so that they all have about
the same spectrum. Spectral balancing is often useful when timing
relationships among the traces are important. For example, spectral
balancing usually preceeds velocity estimation. The spectral
balancing is often done by deconvolution (whitening) followed by
bandpass filtering. This results in the balanced traces having
the spectrum of the bandpass filter. In the balancing algorithm
to be described here, the final spectrum is not predetermined but
is the geometric mean of the spectra of the input traces. One
advantage of this balancing is that there is no danger of pulling
up "moisy holes" in the spectrum. The geometric mean is the
exponential of the arithmetic mean of the logarithms of the spectra.
Since spectra are positive, the geometric mean is a natural average.
It does cost more to compute so we should have some reason for
selecting it. When a collection of spectra are already very similar
to one another, there is very little difference between the two
averages. For a common depth point gather, i.e., seismograms at
various shot to geophone offsets, the spectra are often quite
different. This gives us a reason to think about the comparison
of the geometric mean to the arithmetic mean. Actually we are not
planning to use CDP gathers, but slant stacks for various seismic

ray parameters p . With a slant stack of some p there is a shot
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antenna response, a geophone antenna response, and a mud layer resonance,

all of which are constant over travel time. For each p there is a
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different collection of responses. It is the geometric average
response which we feel is appropriate to use before velocity analysis.
The geometric average discounts extremely large values which can occur
at certain natural resonance frequencies and angles in stratified

sediments. The geometric mean will be zero if any element is zero. Thus, if a

frequency component is completely missing from one trace, it will
be removed from all the traces.

Let Xk(Z) denote the kth original seismogram and Yk(Z)
denote the balanced seismogram. The most straightforward calcula-
tion is
g Xz x (@) 112
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Yk(Z) = Xk(Z)

The use of the geometric mean converts this to
N
1/N
[T ]x, @] ] /

1,2 = X (2) k=1 (2)
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These are readily accomplished with fast Fourier transforms. In

the time domain, this amounts to convolving each trace by a symmetrical
filter. Commonly we prefer to use causal filters. Causal filters

give the correct result with synthetic seismograms. Thus, (2)

may be modified to use the kth prediction error filter Ak(Z),
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and the prediction effor filter, Aave(Z) of the geometric mean
spectrum giving
AL (2)
v, (@) = X (2) IR ) (3)
ave
Although Fourier transformation could be used to compute the
deconvolution filter, Ak(Z) , it is commonly done by the Levinson
solution to Toeplitz equations. Perhaps the reason for preferring
the Toeplitz approach is that it is easy to restrain the filters to
be short. Although the spectra are then not completely balanced,
it is probably preferable that the original data should be modified
only with short filters. The question is now whether we can carry
these advantages over to the geometric mean balancing filter, Aave(z)
Obviously, we could compute the geometric mean spectra with Fourier
transforms and then return to the time domain Toeplitz formulation
to get Aave(z) . Actually, the whole calculation can be quickly
done in the time domain. First, note that the average of the logarithms

of some spectra may be computed by the average of the logarithms of

the prediction effor filters, since

InXX = I n— = -3 mA-232nA (4)

The logarithm of a prediction error filter (actually any filter, with
convergence on the unit circle only for minimum phase filters) may be

computed from the following identities

U(Z) = n B(2) (5)
du . 1 dB
dz ~ B(Z) dz
B Uy

dz T4z
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bl+2b2+3b3Z +oees = (ul+2u22+3u32 +---)(b0+blZ+bZZ +..0)

Identifying coefficients of successive powers of Z we obtain

bl = u b0 (7
2 b2 = ul bl + 2 u2 b0
3 b3 = uy b2 + 2 u2 bl + 3 u3 b0

Along with the initial condition at Z =0 , namely

fn b = u
0 0
(8)
u
= 0
bO e
the relations (7) enable the recursive calculation of logarithms
or exponentials of polynomials. For exponentiation we have
1 k
by = % I iu;b (9)
i=1
For logarithms we have
Sl SL ) (10)
Uk b k kLot Pred
0 i=1

Programs and examples are found in Figures 1 through 6.

It may be noted that it is entirely optional whether to use a

numerator or a denominator representation for the balanced filter. There

is no proof, however, that truncated denominators will be stable.
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SUBRUUTINE AUTO(N,X,LAGS,R)

CUMPUTE AUTUCORRELATION R OF SEISMUGRAK X

DIMENSION X(),R(LAGS)

DU 20 LAG=1,LAGS

HOLAG)=0.

NSUM=N-LAGH]

DO 10 ISUM=1,NSUY
10 ROLAGY=R(LAG)+X(ISUM)*X(ISUN+LAG=1)
20 R(LAG)=R(LAG) /N

RETURM

END

<

SUBRUUTINE LEV(N,R,A,SPACE)
C FIND PREDICTION ERRUR WAVELET A FROM AUTOCOR R
DIMENSIUH RON) ,ACH) y SPACE(N)
V=R(1)
ACDY=1.
DO 30 J=2,i
A(J)=0.
£=0,
DU 10 I=2,J
10 E=E+R(I)%A(J=I+1)
C=F/V
V=V=E*C
DU 20 I=|
20  SPACE(I)=
DO 30 I=1,
30 A(I)=SPACE
V=SORT (V)
DO 40 I=t,u
40 ACDY=ACI)/ZV
RETURN
5N D

vJ
ACI)=C*A(J=-I+1)
J

(1)

SUBROUTINE PMULT(NF,F,N,X)
PULYNUMIAL MULTIPLICATION X=X*F
DIMENSION X(N),F(NF)

DU 20 Kit=1,N

K=N=KR+1

SUi=0,

J=1+HAX0 (0, K-NF)

pd 10 I=J,K

o

10 SUA=SUN+F (K=T+1)*X(I)
20 LK) =5SUH

w2 TURH

END

Fig. 1. Some subroutines required for time domain spectral balancing.
Autocorrelation, Levinson recursion and polynomial multiplication

(filtering).
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SUBROUTINE PDIV(L,DIV,N,X)
PULYRUMIAL DIVISION X=X/DIV
DIMENSIUN DIV(L) X (N)
XCD=XC1)/DIV)
DO 20 J=2,N
LL=MINO(L,J)
SUM=0.
pad 10 I=2,LL

10 SUM=SUM+DIV(I)*X(J-1+1)

20 X(J)=(X(J)=SUK)/DIV(1)
RETURH
END

C

SUBROUTINE PEXP(N,U,BY =~
POLYNUMIAL EYPUNFNTIATIDN B=EXP(U)
DIMENSIUN B(N),U(N)
BCI)=EXP(UCT))
20 20 K=2,H
SUK=0,
DO 10 I=2,K
10 SUM=SUM+(I=1)*UCT)*B(K=1+1)
20 BE(K)=SUM/ (K=1.)
RETURN
END

<

SUBRUUTIHE PLUG(N,B,U)

C POLYNOMIAL LOGARITHM U=LN(R)
UITMENSION B(N),U(HN)
UC1)=ALOG(B(1))
U(2)=B(2)/8(1)

DO 20 X=3,u

SUM=Q.

Ki=K-1

UD 10 I=2,KH4
10 SUM=SUM+(I=1)*U(I)*B(K=1+1)
20 UCK) =(B(K)=SUL/ (K=1.))/B(1)

KETURN

END

Fig. 2. More subroutines required for time domain spectral balancing.

Polynomial division, exponentiation and logarithm.
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C TEST PULYNOMIAL SUBROUTINES

DIMENSION SPACE(10),R(5),X(5),A(5),B(5),U(5),0NE(5)
UAgA KoUNE/1492¢900900900414404404,04,0.7
N=
PRINT 10, X

10 FORMAT (5F13.5)
CALL AUTUG(N,X,N,R)
PRINT 10, R
CALL LEV(N,R,A,SPACE)
PRINT 10,A
CALL PDIV(H,A,N,UNE)
PRINT 10,0HE
CALL PMULT(N,A,lN,0NE)
PRINT 10,UNE
CALL PLOG(H,A,U)
PRINT 1C,U
CALL PEXP(HN,UyA)
PRINT 10,A
STOP
END

CUMPILE TIME = 0.39 SECONDS, OBJECT CODE= 4,672 BYTES, .
1. 00000 2., 00000 0.00000 0. 00000 0.00000
1. 00000 0.40000 0. 00000 0. 00000 0.00200
1.11762 =0.55717 0.27531 -0.13110 0.05244
0.89476 0.44607 0.00197 -0.00394 0.00789
1. 00000 -0, 00000 ~-0. 00000 0. 00000 0. 00000
Os.11121 -0.49853 0.12207 -0.03580 0.00388
111762 -0.55717 0.27531 -0.13110 0.05244

STOP IN LINE 23,

EXECUTION TIKE = 0.07 SECUNDS

Fig. 3. Check-out of subroutines required for spectral balancing.
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SUBRUUTINE BALANS(NT,NX,X,L)

C FILTER SEISMOGRAMS X TO BALANCE THEIR SPECTRA
DIMENSION X(NT,NX),A(9),R(9),5(9),U(9)
LO 10 I=1,L

10 S(I)=0.
LU 20 IX=1,HNX
CALL AUTO(NT,X(1,IX),L,R)
CALL LEV(L,R,A,U)
CALL PHULT(L AZNT,X(1,IX))
CALL PLOG(L,A,U)
Lo 20 I=1,L

20 SI)=SCI)+UCT)/NX
CALL PEXP(L,S,A)
DU 30 IX=1,NX

30 CALL PDIV(L,A NT,X(1,IX))
RETURN
EN

Fig. 4. Subroutine for balancing spectra of NX seismograms X of

NT points each with filters of L 1lags. Sample results in

Figure 5 for 1L=5 .
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Fig. 5. Two traces (left) were generated with random noise into two
different filters. Observe amplitude and frequency imbalance.
Output traces (right) were balanced by the program of Figure 4

to the geometric mean spectra.
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Fig. 6. Spectral balance of the ghosting filters l--Z3 and

l-—Z2 . These filters have multiple zeros on the unit circle.

Balancing was done with 9 term filters. Plotted above are the

balanced traces for an input delta function.
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An application of spectral balancing in the conventional processing
environment (no slant stacks) would be to estimate both shot and
receiver waveforms. Let Aij(z) denote the prediction error wavelet

.th . .th . .
of the trace from the i shotpoint and the j receiver point.
Let Uij(z) be the logarithm computed by PLOG on Figure 2. We

would then do a least squares problem of the type

Uij(Z) x si(z) + Gj(Z) (11)

for shot waveforms Si(Z) and geophone waveforms Gj(Z) . Our
physical model is that we are determining the filtering response near
to the shots and geophones which results from things like irregular
weathering layers or space variable shallow water resonance. The
computational effort in solving (11) is rather modest since each time
lag may be computed separately. The number of variables is equal to
the "fold" of the coverage squared, which makes a rather large set

of simultaneous equations. However, it is so well conditioned and so
sparse that iterative techniques converge extremely rapidly. After
removal of the shot and geophone wavelets, their geometric mean could
be restored to the data before statics are estimated by crosscorrelation

and decomposition of a time residual matrix tij into s; + gj .



