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Migration Equation Coefficients for a Shot-Offset
Frame in Layered Media

by Raul Estevez

In the present paper I intend to complete the work begun in
my last paper, 'Migration Equation Coefficients for an Emergent

Angle Frame ... "

,» carrying out similar calculations but in relation
to the second frame proposed by Claerbout in his paper of July 3
("A Shot Offset Frame ..."). I would like to point out that I still
don't see very clearly the connection between these frames and a possible
generalization of the slant frames equation, valid for sections and
gathers. In particular, I think that a better understanding of this
relationship will probably yield to certain improvements in the proposed
transformations and corresponding equations.

Nevertheless, the introduction of recording variables such as
s, g8, 2, t and interpretation variables such as h, y, r, d (especially
in the case of CDP sections) seem to be necessary if we want to apply
the wave equation to sections. Moreover, the integral transformations
and integration techniques developed in the previous paper as well
as the ones that will be considered in the present paper, may be of
interest in future related studies. Therefore, at least as a matter
of further reference, I thought that it may be helpful to carry on

the present calculations.

H~Frame and Its Jacobian

As previously, we begin from a coordinate system with s, g, z, t
as independent variables and seek a transformation that allows us to
express the wave equation in terms of h, y, r and d as independent

variables.
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According to figure 1 we could define this transformation in
different ways, but when trying to write it for stratified media
we may run into trouble in some cases. For example, if we take the
transformation originally proposed by Claerbout (July 3), we would
have to deal with integrals in relation to the travel time, which
would imply knowing velocity and other parameters as functions of
travel time instead of depth. This last problem can be avoided if
we define the transformation in the same way Claerbout did in the first
of the two frames (p-frame), but expressing instead, p as a function

of h and d , p(h,d). Following our last paper, this would mean:

s = yv-h (1-1a)
g=y+h—u(p(hd), d)=y+h— (1-1b)
2rd/ (1+r)
Spmd) v 1 - emaveEni Y2
‘0
z = 2rd/ (1+r) (1-1c)
d
£ = 20(p(0,d),d) - T((h,d), T d) = zg Tll- emavEn i,
0
2rd/(l+r) 2rd/(l+r) d
2 -1/2 2-1/2
[l'-(P ) ] dz J v[l (pv) ] dz -+2¥ ‘Tl-—(pv)z] l/zdz (1-1d)

0 0 2rd/(l+r)
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The Jacobian of this transformation looks simpler than the one
corresponding to the p-frame (which opens the possibility of an analytical

computation of its inverse):

sh sy sd sr -1 1 0 0
g g g g 8 1 g g
h y d r = h d r (1-2)
zh zy zd zr ; 0 0 zd zr
,_.th ty td tr’ l\th 0 td tr__
If, following our previous paper, we define:
d' = 2rd/ (1+r) (1-3a)
dl
La = (vl 1- Gh,aveni ™2 ¢ (1-3b)
0
dl
L,ma = vi1- en? 172 4 (1-3c)
dl
I;(h,a) = j vl 1- w2 1732 4, (1-3d)
0
. d 2 .-3/2
I,(h,d) = j v[1- (pv)° ] dz (1-3e)
dl
2 .-1/2
Q1 (h,d) = [ 1 - (p(h,d)v(d)? 17 (1-3£)
2 .-1/2
502 (h,d) = [1- (p(h,d)v@)? 172 | (1-3g)
the elements of the Jacobian (1-2) can be rewritten as:
Spoy.d,r = "L 1s 0,0 (1-4a)
= 1-p (h,d) &, +p21.), 1, -p.(I. +p21.)
gh,y,d,r ph b} l P 2 b > pd 1 p 2
(1-4Db)
_ 2r 1 __.2d 1
o Pv(d')sq2, 5 Pv(d')SQ2

(1+r)
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. 2
zh,y,d,r = 0, 0, 2r/(1+r), 24/ (1+r) (1-4¢)
p P p - 2 _2r  SQ2
th,y,d,r PPy (134210, 0, ppy (I3+21,)+ gy SQL-90 - gy
, - —2d 8z (1-4d)

(1+r)% v

As we see, in all the previous expressions p, Py and py are
functions of h and d . So, unless we find a practical way to
compute pch,d), ph(h,d) and pd(h,d) , the Jacobian (1-2) will

remain undefined.

Computation of p(h,d), ph(h,d) and pd(h,d)

In our last paper we found an integral relation that links p,

h and d . 1If in the expression for u(p,w):

W
wpw = p{ V@I 1- w2 172
0

dz , (2-1)

we make u=h and w=d , we will have that

p(h,d) = b : (2-2)

d -
3 v(z)[1-(p (h,d)V(Z))Z] 1/2 dz

0

This relation represents an integral equation for p(h,d) , and
its analytical reduction to an explicit equation does not seem to be
a very easy task. Nevertheless, equation (2-2) is similar to another
equation well known in theoretical seismology (Herglotz-Wiechert's
inversion) and it seems to me quite possible that an explicit equation
for p(h,d) can be obtained following a method attributed to Rasch
(see Garland or Bullen). Rather than following this course I tried

instead to get a good approximate solution.
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In terms of numerical approximations, the first thing we may think about
is a perturbation scheme for (2-2). For small angles (i.e., h/d << 1) p~0 ,

and for a given set (h,d) we could start a recursion beginning with:

h

p(h,d) (2-3)

d
S v(z)dz
0

Subsequently, as the angles become larger, we can begin recursions

with previously calculated values of p , contiguous to the region

of interest. The implicit assumption is that p is slowly varying.

As noted at the end of the previous paper, the presence of the square root
with a singularity at pv=l1 makes these schemes very unstable. If any
success is possible at all, it will depend on the initial value being
very close to the solution, especially in regions near the singularity.

I did not investigate deeply the convergence of various recursive

schemes, but in several tests I made, I got non-convergent recursions

for values of h > d

Since we are interested as well in computing Ph and Pd » another
possibility is to convert (2-2) into an initial-valued problem by
analytically calculating Py and Py as functions of h , d and p .

In this direction I tried with positive results the Runge-Kutta method
but, in general, this kind of solution was quite expensive and the
precision very poor for h > d .

Noticing that the main trouble lies on the presence of the singularity
in the integral of (2-2), it is not difficult to realize that a satisfactory
solution could be achieved by applying the previously discussed method
of product integration combined with a fast converging recursive scheme.

As pointed out before, this method allows us to integrate analytically

the singularity and is described in our previous paper.
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Starting with an initial value for P >

~ h . v(0) +v(d)
p(h,d) = — (2-4)
v(O)v(d) (n%+4a2)l/2 2

and computing the integrals according to the referred method, I got a
very fast and cheap convergence with the Newton recursion (2 or 3

recursions gave reasonable precision).

If we call
rd 2 -1/2
I.(,d) = vl 1 - (pv)” ] dz (2-5)
1 )O
4 3 2 -3/2
I3,d) =) v [1-Gv 17" a (2-6)
)

the algorithm becomes:

PnIln(h,d) - h

il T Pa T L) +p %1, (h,d) )
where, NZ-1

. ;ig‘ R fﬁ-{[ 1= 0vp? 172 - L1 e P 1YY e
T3n = ;%' N?FIET {[l'(pnvj+1)2]l/2'*[l"(anj+1)2]_l/2"

p, 3=07j (2-9)

- -t - n- vt
and
v; = v, +baz . (2-10)

Once we know p for a given set of (h,d) , the computation of
ph(h,d) and pd(h,d) can be carried out analytically, since from (2-2)

it follows that:
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I, (h,d)
b (h,d) = (2-11)
" I} (h,d) +hp (h,d) I, (h,d)

and
2.-1/2
py(hyd) = - ML= v(@)”] . (2-12)
I3 (h,d) +hp(h,d)I4(h,d)

It may seem that too much effort has been put in simply trying
to solve a very small aspect of a particular transformation. The
reason this was done is because I feel that the computation of p(h,d)
may be of importance not only for the treated transformation but also
for future applications. Notice that the ray parameter p seems to be
the best, if not the only, reasonable way to characterize a given ray in
a variable velocity medium. Therefore, its computation from some surface
parameters with a given velocity model, may be very helpful in some cases.
With p¢h,d), ph(h,d) and pd(h,d) , the Jacobian (1-2) is
fully defined, and the computation of its inverse, and therefore the
transformed wave equation's coefficients, can be done in the same way
it was proposed for the previously considered p-frame. I shall point
out that the simplicity of the Jacobian (1-2) indicates that the analyti-
cal computation of its inverse may be a relatively easy task. This
would provide us with analytical expressions for the equation's coefficients.
Further computations, including the consideration of some simple velocity
models (as we did before), should wait for a deeper understanding of

the two considered frames.
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VARTATIONAL PRINCIPLES AND APPROXIMATE SOLUTIONS FOR THE WAVE EQUATION

by W. Scott Dunbar

Traditionally, geophysicists have described the earth in terms of a
partial differential equation. We are concerned with the two dimensional

scalar wave equation in the displacement P :

3% a% 1 3%

2t 2 T Ty L

with the initial and boundary conditions

P(O0, z, t ) =P(x,B, t)=P(A, z,t)=020 (2)
P(x, 2, 0)=7¢Ff(x, z) (3)
S =al(x z) ()

t=0

where A and B are the spatial limits of the problem and c¢ 1is the
velocity. For relatively simple geometries, (1) - (4) can be quite
easily solved. However, for non-trivial geometries, some kind of approxi-
mation must be used.

One approximation technique is afforded through the use of a variational
principle. This involves finding a functional F(P) that is minimized
(or maximized) by the true solution P . The most common variational
principle for the wave equation is Hamilton's principle. This states

that for kinetic energy T and potential energy U , the functional
T

F = (T - U) dt (5)
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is minimized by P subject to the conditions (2) and (3) and to the

additional condition

P(x, 2, T) = h (x, 2) (6)

where T 1is some later time (arbitrary, but fixed). This condition is
necessary in order to define a minimum.

We will now restrict ourselves to one dimension. This will make
the algebra less confusing. Everything that follows can be easily

extended to two dimensions. In one dimension, the kinetic energy is

- 1 N
T = o ( T )T dx

where o is the material density. The potential energy is

_ 1 P 2
U = 2 \ E( ox )" dx
X

where E 1is an elastic modulus. Substitution into (5) gives

T
_ 1 32 2. 3P 2
F(P) = 3 ( e e ( G ) dx dt 7)
0/x
where c2 = E/p . The integrand is known as the Lagrangian, L . The
Euler-Lagrange equation
3 oL d oL _
x (op ) Tae () T 0

is the one dimensional wave equation. ( P 1is the time derivative of

P; P' is the =x derivative.)



The Rayleigh-Ritz technique [1] can be used to find an approximate

solution to (7). We begin by selecting n trial functions f .,f

l"' n b
defined over the domains (x,t) or (x) . A linear combination of these

functions is then used to form P

n
P = I a, f, (8)

where the a, are generalized coordinates or generalized displacement
amplitudes. If fi e(x) , P is a function of time. Equation (8)
is substituted into (7) which is then made stationary with respect
to a; . This results in a set of linear equations for a; which are
then used to find P . Hopefully, this is a good approximation to P
However, it may be difficult to select trial functions that satisfy
the boundary and initial conditions, (2) - (4) , of the original problem.
This is especially true for problems with complex geometry. To extend
the Rayleigh-Ritz method so that it could handle more general problems,
the finite element method was developed.
The key to this method lies in relating the unknown function to an
individual element ofr subregion of the domains, (x,t) or (x) ,
rather than to the total domain. The choice of approximating functions,
fi » 1s then made independently of the boundary and initial conditions
of the total problem. The only conditions to be met are:

(1) the number of coefficients a, must at least equal the number

of nodes associated with the element. In the one dimensional wave propa-
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gation example, if fi €(x) , there must be two nodes and two coefficients.

See figure 1.
(2) the functions must be continuous and differentiable.
(3) the functions must provide compatibility across element inter-

faces, i.e., in the one dimensional case the approximations to P over
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each element must equal each other at adjacent nodes.

Once the functions are chosen and the (local) system of equations
is derived for a particular element, the local equations for each of the
N elements are then "assembled" to give a larger (global) system of
equations for the total problem. This merely involves superimposing the
local equations into the appropriate position of the global matrix. The
global matrix is typically sparse and banded.

The difference between the finite element method and the finite
difference method can now be understood. The latter approximates the
differential operator on a finite point set, whereas the former uses a
continuous approximation. Although the finite element method is usually
associated with a variational principle, it stands independently as
a sophisticated mathematical concept concerning the approximation of
surfaces.

Now to get to some concrete examples. We can choose to approximate

P(x,t) din (x) by the linear function

P(x,t) = al(t) + az(t) X

£1(x) a(t) (9)

where £ (x) = [1,x] and al(t) = [ a (t), ay(t) 1 . To find a we
identify two nodal points of an element and evaluate (9) at each node.

This gives a matrix equation

Pl(t) 1 x al(t)

=
|

P = = | = C a
Pz(t) 1 X | a, (t) J
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This can be inverted to give

“a. () x -x, | | B, () 7]
. 1 ) 1 2 1[ 1 1,
a, (t) 2™ -1 1 _’ | Py()
Substituting into (9)
1 -
P(x,t) = = [xz—x . —xl+x:] Pl(t) ‘
P, (e _‘
T
= ¢ (x) P(t) (10)
where
_ xz—x ~ —xl+x
¢l (X) = xz_xl d)z (X) = X2_Xl

Since the displacement at a node i depends only on x and t and
not on any other displacement, the compatibility condition is satisfied.

We now substitute (10) into (7) to give

2 dx

T _

T

F(P) = ls PT¢ <I>T1'D - CZPT% ELP} dx dt
07x

The Euler-Lagrange equation is (for no x derivatives)

T
Lo d 3y oMl st als a2\ e s
oP dt ( 55-) = 0= [ ¢ ¢ dx | P + fc dx dx P (11)
X x

which may be recognized as the Newtonian equation of motion of the element.

The local "mass matrices"

Me=Scb<dex e=1, 2, .o., N
X
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"

and "'stiffness matrices:

K = c2 S %g- g%z-dx e=1, 2, ..., N
X

are then assembled to give a global system of differential equatioms.

There are several methods of solving this initial valve problem [ 2, p. 24 ],

but they are somewhat cumbersome.

Difference equations could be established by substituting approximate
expressions for P(t) into (11). These would be functions that would
satisfy the initial and end conditions (3) and (6). Equation (11) is
then made stationary with respect to the constants of the expression
for P(t) . This results in a set of difference equations for P (which
may be tridiagonal if a low order expression is used for P(t) ).

However, the end condition P(T) has to be specified in order to solve
this system. By using (4), the difference equations may be arranged to
connect P(0) and P(0) with the unknown P(T)

Rather than go through the details of finding difference equations
for (11), we can exploit a property of finite elements. Finite elements
can be developed in non-Euclidean spaces [3]. This means that we can
approximate P(x,t) by trial functions fi e(x,t) , i.e., finite elements
in space and time. This has been proposed for the wave equation but no
literature seems to exist on its application.

We can choose the linear polynomial

P(x,t) a, + a.x + a_t

Il

£l(x,t) a (12)

i
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By identifying three nodal points (see Figure (2)), we can evaluate

(12) at each node and eventually obtain a set of equations similar to

(10):
T
P(x,t) = V¥ (x,t) P
where
¥ (x,8) = %K[ (xy £y = %y £)) + (6) = £) x + (xy = %)) ¢ ]
¥, (x,t) = %K[ (eg £y = %) €3) + (65 =€) x+ G = %) € ]
V.Gt = %X [ (xp ty =%, £) + (6 = £) x+ () = x) ¢t ]

and where A is the area of the element in the x,t plane.

Substituting (12) inte (7) we get

T
T
_ 1 Tavav o 2 T oy gyt
F(P) = 5 S ( P St 0L P c P % 5% Pg dx dt 13)
0 "x
The Euler-Lagrange equation is
T T T
oL d _ _ oY oY 2 3Y oYy
%~ () = 0= s 5 ot ot~ ¢ ox ax j9x def P (4

0 "x

This is the finite element matrix analog of the one dimensional wave
equation. It differs significantly from (11) in that it is not a
functional of velocity. By assembling the local matrices into a global
matrix, a system of equations results. Although it may not be obvious,
the system is explicit for any degree of trial functions used. We have

used the simplest trial functions.
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Suppose that we are given the (one dimensional) boundary and initial
conditions (2) -~ (4). For the finite element network of Figure (3), the
solution would proceed as follows:

(1) The first tier of elements O gt gk is considered. The

boundary conditions (2) are satisfied by setting P1 = P6 = Pll = ... =0
and P5 = PlO = P15 = ... =0 . The initial condition (3) is satisfied
by setting P2 = f(h) , P3 = f(2h) , P4 = f(3h)

(2) Since P2 , P3 , and P4 are prescribed, (14) may be rearranged
to solve for P7 s P8 and P9 . This is the displaced profile after
k sec.

(3) The next tier of elements kg tg 2k 1is considered and the
solution is marched along in time.

Stability criteria would be similar to those of finite difference
schemes [4].

There is another variational principle for the wave equation. It
is the time derivative of a more complicated variational principle found
by Gurtin [5] for initial value problems. The intriguing aspect of this

principle is that it involves the time reversed wave equation in

Q(x,t) = P( x, T-t ) . The principle is

_ % 2 _ 2 39 2P
F(P) 5 3t ¢ 3% Bx} dx de
0 7x

(15)

+ 2 S g(x) P(x,T) dx

X
where g(x) 1is the initial velocity condition. Although it does not
necessarily concern us, the advantage of this principle is that it does
not explicitly require the end condition h(x) = P(x,T) in the Euler-

Lagrange equations. Q and P can be approximated by space-time finite



118

elements as follows

P(x,t) = ¥ (x,£) P
T
Q(X,t) = d) (XsT-t) Q
to give

T T T

_ 1 T 39 Y, 2 T 39 ¥

F(B) 2 e Poe Qg ax Pydxade

0“"x

+ 25 g(x) ‘PT(X,T) P dx
x

Taking variations with respect to Q results in a different set
of equations for P . Variations with respect to P will result in a
set of equations for Q (which need g(x) = 8P/8t|t=0 )

So far, we have spoken only of the "forward problem" of wave
propagation. The "inverse problem' of using seismic sections as initial
conditions and pushing the waves back into the earth is quite another
game, made more difficult by the fact that solutions in the =z direction
are decaying and growing exponentials. The possibility of using varia-
tional principles to separate the up and downgoing components of the
solution of the wave equation has not been investigated. After this
article was finished, R. S. Anderssen, a visitor to Stanford from Australia,
showed how such a separation could be achieved for the one dimensional
wave equation. A successful separation depends not only on the choice
of an appropriate variational principle, but on the correct choice of

trial functions. His approach is in this report.
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