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Transmission-Compensated Migration of Vertically-
Stacked (Plane-Wave) Sections

by Philip S. Schultz

As the previous article has indicated, one might reasonably
expect transmission diffractions from a deep sea floor with severe
topography. This may impair meaningful interpretation of the data.
This article will describe a scheme for the migration of this type
of data in such a way that recovery of the original geometry of the
reflectors is possible. We will treat only plane waves here; we
hope in the near future to be able to generalize this scheme to NMO
corrected gathers so that the analysis can be done before stacking.

Propagation through Regions of Inhomogeneity

Any migration scheme to compensate for transmission diffractions
using the wave equation, must necessarily be concerned with wave
propagation through localized regions of inhomogeneity. The following
development is contained in more detail in '"2-D Inhomogeneous Media
Wave Calculations” by Jon F. Claerbout in the March 1974 SEP report.

Let us begin with the two-dimensional wave equation,

_ -2
PXX + Pzz = v(x,z) Ptt 1)

Recognizing that we are here concerned with only the plane wave
problem, our transformations are familiar ones. We have, for example,

for the downgoing wave transformation,

z' = z (2)
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Chain rule differentiation allows us to rewrite equation (1) as

- =2 -2
PX'X' + lezl - (Z/V)sztv + (v -v(x,z) )Pt't' = 0 (3)
.. =2 -2, - . .
Defining a slowness s(x,z) = (¥ ~ -v(X,z) “)v/2 and dropping primes
we have

P tE - (2/3)(Pz

XX - s(x,2)P ) = 0 (4)

t

As before we drop the PZz term to obtain

P = s(x,z)Pt

2t + (v/2) PXX (5)

t

Here we make the assumption that the increment Az is taken small

enough so that we may separate (5) into two equations. Namely,

+J
1l

s(x,z) Pt (6a)

P, (v/2) P . (6b)

where (6a) has been integrated once with respect to time. Equation
(6b) is the familiar form of the wave equation used in propagation
through regions of homogeneity. Equation (6a) involves the term
which allows us to propagate through inhomogeneous regions and is
essentially a time-shifting of the wave field, P .

Separating equations (6a) and (6b) as we have done assumes that
we may treat their respective operations alternately. This is
physically equivalent to the thin lens approximation, where shifting
of the waveform is done between propagation steps.

We like to make decisions on the size of Az from sampling
considerations, and this criterion will still apply when equation

(6a) is used alternately. In other words, we shall presume that if
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Az is small enough so that we are sampled adequately in the z-dimension

both before and after shifting, the separation of equations (6a)

and (6b) will be wvalid.

Turning our attention to equation (6a), we are aware that its
essential feature is time-shifting. The amount of shifting is given
by the slowness factor s(x,z) . Since s(x,z) 1is a function of
only x and z , for a given depth in our downward continuation
(z constant) and for a single trace (x constant), the shift implied
by (6a) will be uniform over the entire trace. Indeed, over many
traces we find that it is a function of only the x-coordinate.

There is really no advantage in doing this time-shifting by
means of a differential equation (i.e., equation (6a)). If we know
the velocity structure through which the waveform is propagating, we
can then do this time-shifting by any means we choose, but hopefully
by one which is more economical than a differential equation. (We have
been using a linear shifting routine, SHIFT4 , described in another
section of this report.)

The Sea Floor as a Region of Inhomogeneity

The specific localized inhomogeneity to which we shall turn our
attention is the sea floor. As implied in the previous paragraph,
the velocity structure of the inhomogeneous region must be known before
we can make an attempt at a deterministic propagation through the
region. Usually, a good guess of time-shifting at the sea floor can
be made with some knowledge of the sea floor topography and the velocity
contrast. As will be shown later, an exact knowledge of the shifting

is not necessary. The data enhancement after processing will,
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however, be better for a more accurate estimate of the shift.

INCIDENT DOWNGOING PLANE WAVEFRONT
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EMERGING DOWNGOING 'PLANE' WAVEFRONT

Figure 1.

Figure 1 shows a cross—-section of a velocity interface whose
two-dimensional topography is a step. A downgoing vertical plane
wavefront is distorted in proportion to the topography. The relief,

h , in the wavefront is simply related to a time-shifting, Tt , by
h = v, T (7>

This time-shifting can, in turn, be related to the velocities and

topography in Figure 1 by



) (8)
The generalization of (8) to an arbitrary two-dimensional topography,
H(x) , is simply,

T o= HGO(E —%2) 9)
1

Let us calculate the sensitivity of the time-shift, T , to errors in
topography and velocity estimates. We shall assume that we have

perfect knowledge of vy s the water velocity.

ar = (- Loyan+ B g
v v 2 2
1 2 v
2
and, dividing through by (8),
v dv
d dH 1 2
S R el 10)
2 1 2

So, the fractional error in time-shift is equal to the fractional
error in topography estimate plus the fractional error in velocity
estimate times a velocity dependent factor greater than unity for

v less than twice water velocity. Tt appears that the time shift

2

estimate is more sensitive to velocity errors than to errors in the

v
topography estimate by a factor of ( ———l;—-) . Note that this
y v, -V

2 1

factor reduces in magnitude as v, increases, a desirable situation

since we expect transmission effects to be strong when the velocity

contrast is high. Figure 2 shows this factor plotted against v,
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The factor, Vl/(vz_vl) , multiplying dv2/v2 in equation (10).

This factor shows the relative strength of the contribution to the total
fractional error in time shift estimate (i.e., dt/1) by fractional
errors in v, estimate, as compared to that contributed by fractional
errors in topography estimate, whose factor is always unity. Notice

the factor becomes unity at vy = 2‘vl.
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Migrating Plane-Wave Seismic Sections

In this section we will treat the problem of migrating a
vertically-stacked section (obtained by summing over the shot coordinate
in common receiver gathers without prior normal moveout correction)
with a localized-in-depth strong velocity inhomogeneity causing trans—
mission diffractions. Since the operations involved in this section
are more easily developed considering time-sections rather than depth-
sections, we will define all wave fields and reflection coefficients
in the (x,t) domain, rather than (x,z). Recall that since we are
considering here only plane waves, the horizontal coordinate, x ,
is defined unambiguously as a position in the horizontal dimension.

The figure below shows the geometry and some definitions for the
wave fields. Ray paths are shown with a horizontal component merely
to separate them in the figure. Ray paths are vertical (actually,

we allow a beam of + 15 degrees from the vertical).

shift at

) z1 only

c(x,t) <=>c(x,2)

Figure 3
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The figure shows only one reflector for simplicity, and we will
restrict ourselves here to only one, although generalization to
many will not be difficult and will be discussed later. We
consider the field of reflection coefficients to be c¢(x,t), where
t refers to the two-way vertical travel time to the reflector.

U(x,t,z refers to the upcoming wave field at the surface

o)
(i.e., z=zo) . The third coordinate, z , of the wave field allows us
to keep a physical dinterpretation on the downward continuation process.
For example, if we take the surface upcoming wave field, U(x,t,zo) .
that is, the data at the surface, and downward continue that data one

Az step, we would then have in our notation, U(x,t,z,+Az) .

0

Now D(x,t,zo) refers to the original downgoing plane-wave field,
again as would have been recorded at the surface, 2=z . The wave
field D(x,t,zo) includes a downgoing plane delta function wavefront
with a source waveform, w(t) , convolved on it in the t-dimension.

The third wave field, I(x,t,zO) , is defined to be precisely that

downgoing plane delta function wave field. So,

D(X,t,zo) I(x,t,zo) L w(t) (11a)

D(x,t,zz) = I(x,t,zz) . w(t) (11b)

where the subscript, t , on the convolution symbol refers to the
fact that the operation is single-channel, and in the time~domain.

The argument, t , in the wave fields is not simply time, but
rather the transformed time coordinate that we commonly use in our

plane-wave downward continuation schemes. It is given by

t = t"+ z/v (12)
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where t" 1is clock time, the plus referring to an upcoming wave frame,
and the minus to a downgoing frame. The unprimed time coordinate, t ,
then, refers either to t" - z/v in D(x,t,z) and I(x,t,z) , or
to t" + z/v in U(x,t,2z) . Notice that the two transformed time
coordinates are equal at z=z0=0 » and at the surface we can attach
the normal meaning to the time coordinate. While ¢ (x,t) is described
in these transformed coordinates, no confusion should result, since
when viewed at the surface, c (x,t) is ourmigrated and deconvolved time-section.
The reflector in Figure 3 is at Zy s and at zq there is a region,
presumed to be the sea floor, where transmission will involve distortion
to such an extent that the wave field will be subsequently diffracted.
In the previous article some real parameters were calculated showing
the situations where transmission distortions and subsequent diffractions
might be important.
We will here define a notation for forward and backward propagation
of wave fields between initial and final depths z; and 2z, . Recall

that this propagation will include our usual downward continuation

(equation (6b)) plus a shifting (equation (6a)) at the appropriate z-step

(here, z=zl). There will be two unique operations involved, forward
and backward propagation. Forward will include propagation in the normal
direction (i.e., down for D and up for U ) plus shifting at zq 3
backward will include propagation in the reverse direction (i.e., up

for D and down for U ) plus "unshifting" at We will define

zq -
operator notation so that M+ will signify the forward propagation,

while M will signify the backward propagation. The numerical

subscript will be i in the initial depth, z s the superscript



will be j in

zj » while the midscript will be the index of the

depth where shifting occurs (if any). For example,

2
U(x,t,z,) =1 M U((x,t,z.) (13a)
2 o - 0
0
U(x,t,zo) = ; M4_U(x,t,z2) (13b)
2
D =
(x,t,zz) é M+ D(x,t,zo) (13c)
0
D(x,t,z ) = 1 M D(x,t,z ) (13d)
0 2_ 2
2
I(x,t,zz) = é M+_I(x,t,zo) (13e)
0
I(x,tyz,) = 1 M I(x,t,z.)) (131)
0 7 - 2
From equations (13) it is obvious that
2 0 0 2
1M 1M = 1M 1M =1 (14a)
o "2 * 2 *o
2 0 0 2
1M 1M = 1M 1M = 1 (14b)
o T2 - 2 "o *
2
Note that equations (14) specify no relation between 1 M and
2 0 0 0
1 M+ or between 1 M_ and 1 M+ . This becomes reasonable when one
0 2 2
considers physically what these operations actually do. For example,
2
1 M+ is a natural forward operation on the downgoing wave field, D ,
0
at =z

0

It involves forward propagation between zg and zy , a

60
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shift at 29 and a forward propagatio; from zq to z, - Note
that the natural inverse operation to é M+ begins with a backward
propagation from z, to zy - This is found in the operation g M,
not 1M .

0

Our notation formalism allows other obvious identities to be
written.

2 2 1 2 2 1

éM+= 1M+éM+ or (1)M_=1M_(1)M_ (15a)

0 0 1 0 0 1

;M+= lM+§M+ or éM_=lM__%M_ (15b)

Now let us develop our migration scheme. Our aim will be to find
a relation for the reflection coefficient field, c(x,t) , with the
source waveform, w(t) , convolved on it. We call this quantity

c'{(x,t) . So,
c'(x,t) = c(x,t) N w(t) (16)

The convolution is obviously in the time domain. (Deconvolution to
eliminate the source waveform can be done when the quantity c¢' is
obtained, but deconvolution is not of concern to us here.)

We will consider as known quantities the surface data, U(zo)
(note U(zo) = U(x,t,zO)), the depth, 21 s at which shifting is to occur,
and the amount of shifting (i.e., we have good knowledge of the two-
dimensional sea floor topography and the velocity contrast). We also

shall assume that we have a downgoing vertical plane wave as a source

wave field (this can be simulated by a vertical stack), but we will not
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need to know the source waveform, w(t). We will therefore, be able to construct
I(zO) , being a vertical plane wavefront with a delta function waveform.
The conventional wave equation migration to recover the reflector

at V4

9 involves the operation

= 2 M UGz (17)

ﬁ(zz) 2

where no shifting has been done at the sea floor. U(zz) is not equal

to U(z?) » but is an approximation because there is no compensation
for any transmission effects. Since we know what this shifting

will be, we can write a more exact expression for U(zz) ,

M_ U(z,) (18)

O N

U(zz) =

~

The only difference between U(zz) of (17) and U(zz) of (18) is the
inclusion of the "unshifting" operation at zy s done because we know that
the upcoming wave was shifted on passing upward through z; on its

way to the surface, z We must not do the shifting before we down-

0
ward continue to zq because some diffraction will have occured by
the time U has reached the surface (mathematically, we can say that
equations (6a) and (6b) commute only for ranges z to =z + Az where
Az is given by sampling criteria).

Well, equation (18) is already an improvement on conventional
wave equation migration (17) because it includes the shifting in the
upcoming wave. It does not, however, include the shifting and diffraction that
the downgoing wave has suffered on its path to the reflector. Let us
instead of dealing with D , deal with I because from our original

premises we know 1 precisely, but do not know D because of our

poor knowledge of the waveform, w(t)



We have, for the reflector at Zy s
U(zz) = c(x,t) *t D(x,t,zz)
(19)
= c(x,t) L I(x,t,zz) * w(t) (19)

where all convolutions are single channel and in the time domain.
Equation (19) is a statement of a single-channel coupling between the
upcoming and downgoing waves. The physical interpretation of (19) is
specular reflection at Zy s that is, immediately before and after
reflection, the upcoming wave is merely a differentially time-shifted
version of the downgoing wave, with the shifting given by the reflector
topography. The reason, of course, that this relation is true only

at Zy s is that upward and downward continuation operators separate

each wave field at successive depths, and these operators are multi-channel.

Now we can rewrite (19) as
U(ZZ) = w(t) e c(x,t) * I(ZZ) (20)

We would like to bring I(zz) to the left side of equation (20) and
as we convolve I in the time domain, so also will we invert I in
the time domain.

-1

UG wp [10) ] = W) x c(x0) (21)

Recalling equation (16) and invoking our downward continuation
operators, equation (21) (transposed) becomes
2 2 -1

') = (LU UGotzg)] w [, T60t,20)] (22)
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Now equation (22) is a final statement for our migration scheme. The
final migration involves the single-channel time convolution of two
fields: the factor on the left is the downward continued data to the
reflector at z, with "unshifting" done at depth z; , while the
quantity on the right is the time-inverse of the downgoing wave field
downward propagated to the reflector at z, with shifting done at zq -
Equation (22) is to be compared with equation (17) which is the way

simple wave equation migration of plane-wave (vertically stacked) sections

was done previously.

The added expense involved in equation (22) is not substantial.

2
The operation 1 M_  as compared to g M is very small because it
0

shifts only once (add 3 MAD's per array point with SHIFT4, q.v.).

The convolution operation adds N multiplies per array point where N

is the number of points in the time-dimension of I . We have been
getting satisfactory results with N=20 . The operation i M+ and the
inversion adds computation time, but they are operations og the downgoing
wave field only, and this will be in a significantly smaller array than
the data.

The generalization of equation (22) to a data field with many
reflectors is not difficult. The convolution factor on the left will be
merely the downward continuation of the data to the reflectors.

(With the exception of the shift at zq this has been the stopping
point of our previous migration algorithms.) The factor on the right
will be the inverse of the downward continued and shifted downgoing

wave, but will only be valid for 2z to =z+Az , where =z is the

current depth in the downward continuation. The time-convolution,



65

then will only be valid for reflectors between 2z and z+Az . For
reflectors between z+Az and z+2Az s I must be downward continued
an additional Az step and then inverted and convolved onto the data
in the proper range.

We have been able to devise a scheme for obtaining transmission-
compensated migration without having to know the source waveform, w(t) .
We must, however, have a reasonably good estimate of the shift at the
sea floor. (Examples will be done for this type of migration with

imperfect knowledge of the shift.)



