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Chapter 4. The Two-Dimensional Inverse Problem

Introduction

Up to this point we have dealt primarily with the theory and practice
of computing synthetic reflection seismograms from a known reflector
model. We have included the wave effects of focusing and diffraction
in the synthesis of primary and multiple reflected arrivals. This,
the forward problem, represents a useful new tool in the analysis of
diffracted multiple phenomena through various model studies. In an
interpretive sense, one can conceive of procedures for interactively
or iteratively adjusting the model to obtain close agreement between
the synthetic and field data. Such schemes of organized trial-and-
error are to be found applied to many geophysical problems.

This type of "inversion" approach usually involves developing
a functional relationship between the observable results and the model
parameters. Linearizing the system of equations, an initial model is
then iterated in order to improve some quadratic measure of the errors
between the observed and calculated data. For an arbitrarily complex
medium, the system of equations needed for modelling 2D reflection
seismograms becomes immense. To make the problem tractable numerically,
the common approach is to extract a modest amount of information, such
as reflection picks, for use as '"data" in the inversion algorithm.

We will not be considering such techniques here.

It is the central point of this thesis that diffracted and focused

primary and multiple reflected energy represents valuable signal informa-

tion essential to high resolution mapping of reflectors. Furthermore,



this information can be used directly, within the framework of the theory

developed, to properly map subsurface reflectors.

Before proceeding with the discussion of the inverse problem we
shall recall and discuss the more important assumptions and approxima-
tions made up to this point. This will serve to delineate the scope
(and applicability) of the problem we will be considering. The two-
dimensional assumption was initially made on the premise that reflection
seismic profiles are shot perpendicular to the presumed geologic strike.
In addition, the point should be made that in the absence of integrated
cross-shooting or 3D coverage this is perhaps the best assumption which
can be made. In any case, out-of-plane reflections and energy losses are
not modelled by our equations.

Our use of velocity is only concerned with migrating diffracted
primary and multiple waves. Choosing the "depth" sampling function
to be Az = v At/ 2 was an artificial way of preserving the one-to-
one correspondence between points on the model C and points on the
seismograms R . Actually this results in C being termed a

migrated time-section (or reflection coefficient time-map) as opposed

to a depth-section. We may consider a migration process of consisting
of two separate operations. One is concerned with the movement of
diffracted and focused energy while the other deals with the broader
aspect of velocity related travel time anomalies. In the former,

we use the migrating partial differential equation to collapse
diffraction hyperbolas to points and diffuse focused regions. 1In

the latter, we do a final stretching of the time coordinate in

accordance with a velocity profile to yield a depth section.
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This distinction is clarified in referring to Figure 4-1. Frame (a)
represents a depth section of a low velocity mass bounded by reflectors
1 and 2. Frame (b) is the reflection time-section on which the velocity
pull-down due to the excess low velocity path in the anticlinal crest
can be noted. Note also the diffraction hyperbolas arising from the
fault boundary. The migrating differential equation applied to the
data of (b) yields a migrated time-section (c). Application of a
velocity v(x,z) in stretching the time axis gives a migrated depth-
section. 1In the forward problem we begin with a reflection coefficient
time-section C and compute the reflection seismograms R . The inverse
problem, in this context, consists of deducing C from the observed

reflected primary and multiple waves R .

As in the one-dimensional algorithm, we will have need for an
estimate of the source waveform inverse. In the forward problem we
specified both the magnitude and waveform of the initial surface
disturbance. Here we assume that this information is likewise available,
either indirectly through an estimate (based on the relationship
between primary and multiple waves) or, perhaps, directly measured.
The source waveform inverse, when applied to the data, calibrates the
seismograms to those of a unit magnitude, impulsive source.

A basic assumption in developing the equations for upward and
downward propagation was that we restrict consideration to those waves
travelling at angles close to the vertical. This led to a simplifica-
tion of the continuation equations and resulted in a numerically
manageable algorithm. We might expect that including the higher~
accuracy term aixz would enable us to include the wide-angle paths.

This would be true in homogeneous regions. However, we should note
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Figure 4-1 TIllustrating the steps involved in inverting reflection seismic

data. Frame (a) represents a depth section of a low velocity zone bounded

by reflecting interfaces 1 and 2. Frame (b) is reflection time-section

as observed at zero offset. Note the characteristic velocity pull down

due to the excess low velocity medium. Also note the diffraction hyperbolas
generated by the sharp fault boundary. Multiples are indicated by dashed
lines. The migrating partial differential equation applied to the data of
(b) yields a migrated time section (c). Multiple reflections are modelled
by our equations and are properly extinguished in going from (b) to (c).

Application of the velocity v(x,z) in stretching the time axis gives a
migrated depth-section (d). Our inversion technique consists of deducing

a reflection coefficient time-section € from the reflection seismograms R .



that in perturbing the solution about vertical paths, the coupling of
the waves is expressed in terms of vertical derivatives of the velocity.
That is, the reflectors are defined in terms of normal incidence
reflection coefficients; the reflection magnitude is independent of
incident angle. The truth is that the reflection coefficient is a
function of angle. Fortunately, the variation in magnitude is slow
near normal incidence (Muskat and Meres, 1940).

The uncertainty in the reflection coefficient, and, additionally,
the existence of converted waves may be reduced by dealing with only
the narrow-beam ( <15° ~20° ) paths. For the usual reflection geometry
involving moderate subsurface dips this condition is reasonable for
recordings due to a plane wave source. Thus, the inversion technique
will be based on the narrow~beam equations of (3-31) with an initial

plane wave source E(x) =1 .

Dealing with Causality

The reflection seismograms observed at the surface of the earth
provide necessary boundary conditions for downward continuing both the
up and downgoing waves. In the case of downgoing waves this is also
sufficient information (together with the migration velocity) for
projecting the waves to arbitrary depth. Thus, equation(3-31b) may
be used, with the major recursion over/time or depth, to compute the
D wave field everywhere in the (z,t') plane. Considering the
downgoing waves to be known everywhere of interest, we now must focus
on the important upcoming wave equation.

Physically, when time flows forward, the differential equation
(3-31a) propagates upcoming waves toward the surface (decreasing =z ).
To propagate upcoming waves back down into the earth (increasing z ),
time must run backwards. Thus, in the upcoming wave equation time

and depth may naturally move in either direction, but not the same
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direction. Conversely, for the downgoing wave equation time and

depth must flow in the same direction. In the physical world,
where time runs forward, this is a statement of causality. In the
computer, where time can go either way, it becomes a requirement for

stability. The forward problem, either done in the computer or in the

field, requires

fime to run forward and the up and downgoing waves
travel in opposite directions. In the inverse, we will use the
computer to project both waves downward, resulting in time running
in opposite directions with respect to the separated wave fields.
The upcoming equation (3-31la) is approximated by the finite

difference operator (3-43).

Z
I k k+1 o k k+1

' n (I-aT) | -(I+aT) n' | -1/2]-1/2
®u- ®s = 0
n+l | —-(I+aT) | (I-aT) o+l | 1/2| 1/2
Recall that the source term S was defined as the cross product

1] 1
of the reflection coefficients and the downgoing wave SE A Ck DE k .

For the moment assume that S is known. The stable direction of

1
n

k+1

(outer) recursion proceeds from the surface down to the deepest

convolution for the inverse is in solving for U The major

detectable reflector, i.e., k=0, k=1, k=2, ... . The minor (inner)

recursion integrates the waves, at a constant depth (k) , from

t'=» to the first arrival of the downgoing wave. 1In practice we

only record for a few seconds, say t;ax . However, usually this is

sufficient time for the reflected waves to fall well below a detectable

level. Thus, assuming that the upcoming waves vanish for n5>n;ax
nl

we integrate U, back in time: n'=n’ ,n'=n'_ -ly... , n'= k-1

n'= k along cells at constant k . Figure 4-2 illustrates the



recursion for the inverse problem as compared to that of the forward.
The important thing to note is that we have the observed seismograms
R(x,t) as a boundary condition at z=0 . The entire reflected wave
field participates in the calculation. As/we integrate up from n'max

the upcoming waves are projected down one Az step.

4

FORWARD INVERSE

Figure 4-2. Two causal directions exist for propagating upcoming waves
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as illustrated above. The finite difference operator is used recursively

on the U and S (z,t") planes. 1In the forward problem (left),
the major recursion 1, 2, 3, 4, 5 «++. is over time. The minor

recursion (arrows) integrates U from the reflectors to the surface.

In the inverse problem (right), the major recursion is over depth. The

minor recursion integrates the upcoming waves backwards in time, to
the first arrival of the downgoing wave, for a particular depth. A
boundary condition in the inverse is that upcoming waves vanish after
the maximum recording time, t; - As we integrate up from t'

ax max

the upcoming waves are projected down one Az step.



Knowing how to correctly downward continue upcoming waves
through a known medium (i.e., given C(x,z) and computing D(x,t"),
the reflected source waves S(x,t')maybe determined) is an important part
of the inverse problem. The other part arises in the interesting
case where C 1is unknown. In some situations we may have a priori
knowledge of the source wave field. This is true for data collected
in very deep water where the length of recording encompasses mainly
primary reflected energy. For practical purposes it may be assumed
here that the downgoing wave consists of just an impulsive plane
wave. Thus, S 1is zero everywhere in the (z,t') plane except
along the first arrival trajectory. With SE'= p° Cp §(n-k) , U
may be integrated up from n;ax to n' = k-1 neglecting the source

term. At the reflector (n'=k) we have, now including the non-zero

o
source term D C, ,

k
k o k+1 k k+1
(I+aT) Uk -D Ck’/Z = (I—aT)(Uk + Uk—l) - (I+aT) Uk—l
d usi Uk = DOC may compute C from
and using Kk k ve y p k
o k+1 k k+1
(I+2aT) ck = 2/D [(I-aT)(Uk + Uk_l) - (I+aT) Uk_1 ]

This represenE§ a special case for the migration or mapping of
reflectors in the absence of multiple reflections. In the presence
of multiple reflections the downgoing wave is contaminated with
reflected energy from the free surface. Subsequent interaction with
the reflection coefficients generates source terms after the passage

|

. . . n
of the first arrival. Thus, in general, we must assume that Sk may

be non-zero for all =n' in the region k < n'< n' of the (z,t')
& max

plane.
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Principles of Reflector Mapping

The separate continuation of up and downgoing wave fields
provides the necessary framework in which a general reflector mapping
procedure may be developed. The ability to compute both wave fields
at depth is a great advantage in imaging complex reflectors. We may
immediately call upon two very basic principles of reflector mapping,
applicable over a wide range of situations including the presence
of diffracted multiple reflections. The first is the fundamental
principle of reflector mapping (Claerbout, 1971b) which states:
reflectors exist at points in the ground where the first arrival of
the downgoing wave is time-coincident with am upcoming wave. This
very useful principle provides an operational definition of a
reflecting interface in terms of up and downgoing waves. The second
principle which is also of basic importance to the inverse problem is:
at any given point in the earth, upcoming waves must vanish for all
time prior to the first arrival of the downgoing wave. Both principles
are valid for an arbitrary number of reflectors.

These ideas are illustrated in figure 4-3 where we have a
surface source E and a reflector at depth =z corresponding to

3
receiver locatiom G3 . There are also receivers located above and
below the reflector with the observed up and downgoing arrivals
displayed with time referenced to the shot. At the reflector
G3 the upcoming wave is time-coincident with the first arrival.
Prior to the first arrival of the downgoing wave (left triangular

region) the upcoming waves are not observed. The relationship

between the waves observed in this coordinate system and the transformed



AL
c

o
H
o
>

U .
oy =

Figure 4-3. Up and downgoing waves observed with buried receivers.
A disturbance exits the surface at t=0 and is observed passing
the receivers G, ... G at progressively later times. At the
depth =z of a reflector, G receiver records, in time-
coincidence, both the upcoming and downgoing waves. Shallower
receivers also record both waves. Deeper receivers record only
D . The diagonals are lines of constant surface arrival time
(t' = const. ) for U and lines of constant surface departure
time ( t" = const.) for D . The fundamental principle of reflector
mapping states that reflectors exist where U and D(t"=0) are
time coincident. A second principle is that the upcoming waves
must vanish for all time prior to the first arrival of the downgoing
wave.



75

coordinate is,

t+z/v

t
il

t-z/v .

ot
It

Thus, the two diagonals in the figure represent lines of constant t'
(constant surface U arrival time) and t" = 0 (first D arrival time).
In the region to the left of the first arrivals, ¢t < z/v .
the upcoming waves must wvanish. This corresponds to the upper
triangular region in the (z, t')plane t'< 2z/v

Although we may record primary and multiple reflections
arriving simultaneously at the surface, all the upcoming waves must
vanish below the deepest reflection point consistent with that
surface arrival time. Actually, we have used both principles previously
in the forward problem. There we used the boundary condition that
U(z,t') and S(z,t') were zero to the right (below reflectors) of
the first arrival trajectory, t'" = 0 , in integrating up to the
surface. In the inverse we integrate down to the reflector, whereupon
further integration past the reflector should cause the upcoming waves
to perfectly extinguish. Thus, the second principle provides a
performance constraint for the downward continuation of U , while the
fundamental principle provides a basis for imaging reflectors from U and
D waves. We may think of this as a sort of bootstrap procedure: to
downward continue U to a given depth we need the reflection coef-
ficients C for that and all shallower depths; to estimate C at

a given depth we need both U and D at that depth.
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As the waves are projected back down into the earth they begin
to focus on the reflectors. Crossing the reflector the primary waves
should exactly image the interface. Simultaneously all multiple waves
ending with that same primary path must vanish. Thus, downward continua-
tion of U (including the multiple source term) is both a means of
imaging complex reflectors and inverting diffracted multiple reflections.
The ability to correctly estimate the reflection coefficients from the

waves at the reflectors is essential to the inversion of the multiples.
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Estimating Reflectors from the Waves

It suffices to consider the problem of computing Uk and Ck

knowing the upcoming wave and reflection coefficient cells one Az

. . 3 3 '
step above: Uk—l and Ck—l . Convolving backwards in time from tmax
n'_ n'-k
the columns of cells Sk = Ck Dk and Uk are unknown.
z
'} k-1 k-1
Uk—l 0 Sk—l 0
k k k k
U1 | Y Sk-1 | Sk
k+1 k+1 k+1 k+1
Ye-1 | Uk T (4-2)
k+2 k+2 k+2 k+2
V-1 | % k-1 | Sk
k+3 k+3 k+3 k+3
U1 | Y Si-1 | Sk
: ® . P
(I-aT) |- (I+aT) -1/2 | -1/2
- = 0
—(I+aT) | (I-aT) 1/2 1/2

Consider inserting two trial values for the reflection coefficients;
say Ck = +]1 and Ck = -1 for all points along the x—axis. With the

'—-
trial sources of Sn = +Dn k

x = 1Dy we integrate the upcoming wave equation

up to the first arrival n'=k . In the process we excite erroneous
. + - . '

upcoming waves, say e and e corresponding to the C's of +1

and -1 , respectively. Furthermore, continuing to integrate past

the time of first arrival we will, if the trial reflection coefficients
. ) ) + + +

are incorrect, experience upcoming waves ( € 1 s € 5 5 € 35 +on )

and ( e:l ’ e:z s e:3 , ««+ ) Dbefore the first arrival of the down-

going wave. From the erroneous waves we will deduce the true reflection

coefficient.



Next, consider forming a linear combination of these two separate

experiments
Z ;
0 et 0 e~ 0 0 0 0
¢! -3 -3
+ —
0 e, 0 e_, 0 0 0 0
k-1 + k-1 - k-1 k-1
Ue-1 | ©-1 Vo1 | e Sp-1| © Sk-1] ©
k + k - k 0 k 0
o % Uk—l ey |+ Bl =* Uk-l €0 o] * Sk—l D, +* Sk—l D,
k+1 + k+1 - k+1 1 k+1 1
U1 | &1 Ue-1 | & S-1f Pk Sp-11 Pk
k+2 + k+2 - k+2 2 k+2 2
V-1 | &2 Ue-1 | &2 Sk-1] Dk Sk-1] Pk
k+3 + k+3 - k+3 3 k+3 3
Ue-1 ] ©3 V-1 | ©3 Sk-1] P -1 P
— e
(I-aT) [ -(I+aT) -1/2 -1/2
- = 0
~(I+aT) (I-aT) 1/2 1/2
Choose to constrain the combination such that the left-hand, or known,
upcoming and source wave columns are unmodified;
a + B =1 (4-4)
Further, choose the weights such that the right hand source column is
the product of the reflection coefficients Ck and the downgoing wave;
o - B = Ck . (4-5)
Thus, solving for (a,B) , the proper linear combination expressed in
terms of the unknown reflection coefficients is
o = (1+ Ck Y/ 2 (4-6 a,b)
B = (1-¢ )/2

k
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The equations for the unknown upcoming waves in terms of the erroneous

upcoming waves are

ef3 e:3 0
etz e:z 0
E;EE~ * efl + E%EE' % e:l = 0 (4-7)
e; eB Ut
el ‘) o
& e; o
& e§ o

where we have made use of the second principle in specifying the upcoming
waves to be zero for n<k . From the top set of equations in (4-7)

we may derive an estimate of the reflection coefficient. If we were to
use just the single equation before the first D arrival, the estimate

would be

+

G, = (e +e )/ (el e ) (4-8)

k

for each point along the x-axis.

In a practical situation this would be a poor reflector estimator
for several reasons. First, the presence of noise in the upcoming
wave field makes an estimate based on a single point statistically
unreliable. Second, in the case of an = incorrect migration
velocity the upcoming wave field may not be sharply focused at

the reflector. For example, if the migrating velocity were too high
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we would naturally expect over-migrated portions of the waves contaminating
the region before the first D arrival. Clearly, a practical estimator
should accomodate a fuzzy wave front arising from either noise or
inaccuracies in the migrating velocity. Thus, we may consider minimizing

the weighted sum over M points before the first arrival

M
min I wl(1l+c)e’, + (1-c yel, ] (4-9)

Ck i=1

A least-squares minimization gives the following estimator of the

reflector

c. = izt (4-10)

The weights may be chosen depending on the particular problem.
The belief that the upcoming waves may be well-focused at n'=k
suggests weighting the equations near the reflector more heavily such as
with the linear taper w; = M-i+l. Thus, from equation (4-7)with n'< k
we derive an estimate of the reflection coefficients at depth kAz for
all x . Whereas, from the same equations with n'> k we may compute

the upcoming waves Uk using those estimates.
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Synthetic Examples

In this section we apply the inverse algorithm developed in the
previous section to several synthetic 2-D seismograms. As data we use
the results of the forward calculation for the surface boundary conditions.
The aim is to numerically verify the theoretical reflector mapping principles
and the resulting reflection coefficient estimator.

Figure 4-4 represents the case of two point scatterers
imbedded in a constant velocity material. Frame (a) is the original
reflector model and frame (b) is the synthetic seismogram taken from
Figure 3-5. The inverse source waveform was estimated from the primary
and simple multiple of the shallow scatterer by the method of chapter 2.
Applying this estimate to the synthetic data yields the surface boundary
conditions for D 1in the downgoing wave equation. The boundary conditions
for the upcoming wave U was the unaltered data of frame (b).

Downward continuing both U and D while simultaneously estimating
the reflectors we progressively develop the inverse section of frame
(c). This may be compared with the original model of frame (a). In both
the forward and inverse calculations waves travelling at angles greater
than 30° were attenuated in accordance with the narrow beam approximation.
Loss of this part of the w-k spectrum accounts for the inability to
completely collapse the primary diffractions. Additionally, the errors
in the source waveform estimate contribute to imperfect cancellation of
the diffracted multiple reflections. However, even with these numerical
inaccuracies the reconstruction is quite acceptable.

A model in which the wave angles are less severe than the previous
is illustrated in Figure 4-5. Frame (a) represents an undulating seafloor

reflector overlying a faulted monocline. The seismogram as computed with
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the forward algorithm is shown in frame (b). Seafloor roughness or
curvature increases from left to right, hence the multiple arrivals are
more highly diffracted on the right side of the section. This is particularly
apparent on the pegleg multiples arriving after the structure primary.
It is interesting to compare this calculation to the results of the 1-D
synthesis (using the same model) as appeared in Figure 2-5.

With the reflected primary and multiple waves of frame (b) as surface
boundary conditions the results of the inverse calculation appear in
frame (c). The slight amplitude "halos" in the reconstruction are due to
an imperfect source waveform estimate. This does not appear to seriously
degrade the ability to invert the diffracted multiples and reconstruct
the true reflectors. The important aspect of this example is that the
large amount of complex diffracted multiple energy is easily accomodated
by the inverse mapping technique. Figure 4-6 illustrates a similar model,
however, inaccuracies in this reconstruction are due to a different problem
as indicated in the caption.

The final example represents the synthesis and inversion of reflected
waves due to a low-velocity ridge structure model. Frame (a) of Figure
4-7 is the reflector time model constructed for a depth model which
consists of a low-velocity layer bounded above by a ridge and below by a
plane interface (i.e., a planoconvex lens). The surrounding velocity is
1.83 km/sec. and the layer velocity is 1.22 km/sec. The excess low-
velocity path beneath the ridge crest is expressed by a 66% velocity pull-
down of the lower reflector. Frame (b) is the 2-D reflection seismogram
computed with a plane wave gource normally incident on the model.

The primary Pa of the top interface scatters waves off the ridge
diffusing the recorded wave amplitudes into a wide hyperbola. Waves

travelling into the low-velocity layer converge and focus on the lower
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interface. Reflecting back to the surface, the focused waves then diverge
into the travel time hyperbola on Pb .
The multiples for this simple model are strikingly complex. The
multiple Ma , having reflected twice off the ridge, diffuses and weakens
the reflected amplitudes even further so that the second reflection off
the crest is barely visible. The second reflection off the lower
interface Mb exhibits refocusing through the lens and further diffraction
of the primary Pb wave. The complex pegleg Pm contains several
interferring diffracting hyperbolas.
Using frame (b) as the surface data for the inversion, frame (c)
is the reconstructed time section as deduced from the waves at depth.
Note that the flanks of the ridge are weakened in the migration. This is
entirely due to loss of the wide angle waves (ends of hyperbola tails)
which have been attenuated by dip filtering in both calculations. However,
loss of this energy does not seriously affect inversion of the multiples.
The diffracted multiple reflections have been adequately predicted and

diminished in the process of downward continuing through the primary

structure.
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Wave Fields Sampled by Multifold Recording

The forward and inverse problems have been approached assuming that
the measurements taken at the surface represent a sufficiently sampled
wave field governed by the two-dimensional scalar wave equation. Further-
more, the inverse algorithm was developed assuming an initial plane wave
source. The success of this approach to inversion of seismic reflection
data depends on the degree to which the data (as surface boundary conditions
for the differential equations) fulfill these requirements. This may seem
an obvious restatement at this point, however it is of central importance
and cannot be overemphasized. Departures of field data from our physical
assumptions and numerical approximations are most likely to be associated
with 1) preservation of true relative amplitude information, 2) effective
source/receiver geometry, and 3) density of sampling in the profiling or
x coordinate.

The need for precise amplitude information is not essential for
migration of primary reflected waves. However, the inverse techniques
(both one and two-dimensional) proposed in this thesis rely upon primary
and multiple waves being in accurate and true amplitude balance. AGC
type data or poorly recovered binary gain data are insufficient. Further,
any correction or stacking operations applied to the data prior to
inversion must preserve this relationship.

Marine seismic profiling is normally conducted with a ship towing a
repetitive sound source followed by a cable packed with sonic receivers.
Typically the cable is 600-2400 m in length with single detectors or
sections of summed detectors spaced at 20-50 m intervals. The extent
of the cable then represents the aperture within which the reflected

wave field is sampled and recorded on separate channels. As the ship
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translates along the x-axis , firing the source at regular intervals,
the finite cable aperture sweeps out a continuous aperture which may
extend for tens or hundreds of kilometers.

Figure 4-8 illustrates the usual multifold recording geometry and
resulting aperture coverage due to translating the source and receivers
along the x axis . The coordinates of the source and reciever along the
x axis are s and g . For a particular s-g pair y represents the
midpoint coordinate and f is the separation or offset. By reciprocity
y 1is a plane of symmetry if s and g are interchanged. The coverage
of the translating cable aperture is a band of information running parallel
and often offset to the midpoint axis. By collecting or gathering the
information in this band in various ways we may simulate a variety of
synthetic apertures and synthetic source distributions. By summing or
stacking the data we may simulate the results of the sources being set
off in unison.

A particular gather—and-stack technique in wide use is the common-
midpoint stack (common-depth-point stack). This is done by collecting,
in the aperture band, data perpendicular to the y axis. These gathers
are then moveout corrected, stacked and placed on the y axis. The
basic advantage of this stack is the very localized nature of the subsurface
coverage. Time stretching of the recordings acts to focus the waves
back to a small reflecting region. The fundamental disadvantage, with
regards to the inversion procedure of this thesis, is that multiple
reflection amplitude information is not preserved.

What we desire is a stacking procedure which faithfully preserves

amplitudes and simulates recordings due to a plane wave source. While



Figure 4-8. Multifold recording geometry and resulting coverage of

the cable aperture. a) the ship towing the repetitive source and
a cable of receivers sweeps out a continuous region of coverage.
The coordinates of the shot and receiver along the x axis are

s and g . The midpoint is y and the offset is f

b) As the ship translates along the x axis the data is collected
in the hatched region in the s-g plane. Data collected in the
aperture band may be used to simulate a variety of other source/

receiver geometries.

90
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we cannot produce a plane source from a linear experiment we may, if the
subsurface structure is reasonably 2-D, derive a good approximation from

a line source suitably corrected for geometrical spreading into the third
dimension. By summing (without normal moveout correction) all possible

shots into a common~receiver position we may simulate the results of the
shots being fired simultaneously. Repeating this operation for each

receiver position yields a representation of the wave field as a function

of x due to a linear source. This type of stack, in terms of the available
data, is illustrated in Figure 4-9.

Practical problems arise with the common-receiver~point stack when the
cable is displaced or offset a large distance from the shot. Under these
circumstances the valuable near-vertical incidence waves are lost.

Depending on the depth to the reflector and the cable offset this translates
into an inability to properly resolve diffractions on the multiples as
induced by small lateral variations on the primary waves. That is, small
features diffracting the primary wave path may not be encountered on
multiple paths. The offset problem may be partially overcome by interpola-
ting traces into zero offset. However, strict application of the inverse
technique requires that the wave field be sampled up to vertical incidence.

The final problem which is one not normally considered significant
in processing seismic reflection data concerns the sampling of the recorded
wave field. The density of sampling determines how well the finite differences
of chapter 3 approximate the true derivatives of the waves. Numerical
analysts usually state the discretization error in terms of the grid
sampling interval. However, a more practical measure is the error associ-
ated with a finite grid as expressed in points/wavelength. Fourier

transforming the approximations in equations (3-32 a,b,c) we obtain
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Figure 4-9. Synthesis of a plane wave source. Ideally, if data were

collected in all regions of the s-g plane the line source or
common-receiver stack would be simulated by summing all recordings
(without normal moveout correction) parallel to the s axis along
the dashed line of a). Repeating this for each receiver location
would simulate the line source (which would then be corrected for
geometrical spreading into the third dimension). In terms of the
data available in the aperture band of b) this is approximated by
summing along the dashed lines. To get the data for negative offset
we sum along a line of constant s (by reciprocity interchanging

s and g the results are identical, i.e. U(s,g) = U(g,s)

implies U(y,f) = U(y,-f) ).
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2 k Az
kz Ay tan > s (4-11a)
2 wAt
~ L WAT -11b
w A tan , and (4 )
] k Ax
k2 x 4 sin2 X » Trespectively. (4-11c)
X 2 2
(Ax)

Expressing these approximations in terms of n pt/A in each dimension

the discretization errors ¢ are

EAz(nz) = ﬂ/nz - tan W/nz ) (4-12a)
EpcMy) = (/n_ - tan 7/n_ ) (4-12b)
EaxNy) = (m/n = sin m/n_) (4-12¢)

If we desire to compute within a 2% error we must have 8 pt/A in

z and t and about 6 pt/A sampling in =x . Usually the waveforms

are well sampled in time and the Az step size may be chosen in the
computer to meet this accuracy. Undersampling is most likely to occur
along the x axis. For example, at a typical wavelength of 75 m , we
would require a Ax mno coarser than 35 m to properly model waves up to
20° angles. Clearly the problem may be possibly compounded further for
multiple reflected waves. Successive multiple reflections off a dipping
interface may rapidly approach steep angles. The correct choice of
sampling interval is data dependent, of course, but qualifying the choice
must be process dependent. If one expects to apply partial differential
equations to field data the sampling must be consistent with the numerical

constraints.
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Figure 4-10 illustrates a synthetic model computed with the 2-D
forward algorithm and two different displays of field data. Frame (a)
is the reflector model consisting of a seafloor sloping down into a narrow,
flat-bottom depression. For reference, the seismograms computed with the
1-D algorithm are shown in frame (b). The seismograms as computed with
the 2-D algorithm and a plane wave source are illustrated in frame (c).
Note that with successive reflections off the curved boundary the multiple
period shortens. The multiple waves reverberating in the water layer
progressively sample higher up the slopes. Thus the multiples migrate
upward and inward tending to narrow the width of the depression. By

the second multiple M the waves have moved up five wavelengths in the

2
deepest part of the model relative to the 1-D calculation. TFor a plane
wave source there is always a component of the flat bottom in the multiples.
This acts to generate a new diffraction hyperbola for each reflection.

Frame (d) is a section of 27-fold common-midpoint stacked field data
(CDP) . The model of frame (a) was chosen to closely resemble the migrated
seafloor primary of these data. Although the diffractions are partially
obscured by other waves the hyperbolic branches may be observed on the
first seafloor multiple Ml . Note also that on the smoothly sloping walls
the reverberation period shortens exactly as in the synthetic model.

However the discrepancy between the common-midpoint geometry and the plane
wave geometry is most apparent in the deep part of the depression. The

CDP data do not exhibit rapid narrowing of reflections off the side walls.
Although there is some uncertainty as to three dimensional structure, this
is probably due to the highly focused nature of the CDP geometry and stack.

Due to the differences in wave fields sampled by the two geometries these

multiples would not be inverted by the methods in this thesis.
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To illustrate another problem stated above, we note that to properly
model waves in this example the spatial sampling interval (%) had to
be three times as dense as that of the field recordings. Forplotting
purposes only every third trace computed was displayed in frame (c). That
is, to model the waves with about 6 pt/A in x , Ax was chosen to
be 17m as compared to 50 m spacing of the midpoints in the field
recording. Even at this rate some numerical inaccuracies result as may
be noted on the steep slope of M2 . Therefore, even if the physical
assumptions were met in this case these data would not be sampled
sufficiently for use in the finite difference equations.

These requirements basically relate to possible refinement of field
recording procedure or parameters. In particular, the need for true primary
and multiple amplitudes and the close offset, small angle waves is essential.
Degradation or misrepresentation of amplitudes or the absence of small angles
are inconsistent with our underlying assumptions. Experience with data
available has consequently proved inconclusive with respect to field

application of the inverse theory because of these inconsistencies.



