Chapter 2. One-Dimensional Noah's Deconvolution

Introduction

An ancient geophysicist by the name of Noah had an unusual method
of reflection profiling. Noah recognized that a severe problem with his
seismic exploration at sea was the multiple reflections involving the
near-perfect reflector at the sea surface. That is, simply the presence
of the free surface accounted for most of the disturbing multiple
reflections. Being the practical man that he was, and having knowledge
of the latest weather forecast, Noah proposed to collect his data in a
submarine during the flood. Thus, by effectively removing the free
surface reflections, the very good result was that Noah's seismograms
were free of seafloor, pegleg, and structure-structure multiple reflec-
tions. Figure 2-1 illustrates Noah's recording geometry.

While we cannot record data like Noah, we may try to synthesize
Noah's seismograms from ours in the computer. That is, we would like
to find a transformation of the data which takes us from our geometry
to Noah's. 1In this section we will consider a one-dimensional earth
model and develop a single-channel algorithm for the transformation.

In chapters 3 and 4 we will extend the analysis to waves in two dimensions.

There are good reasons to study a one-dimensional model of the earth
in addition to a two-dimensional model. First of all, a large portion
of the data we record is, in fact, over relatively flat, layered
structure. Explorationists have long used this large component of
horizontal layering to their advantage in data processing. Secondly,

a one-dimensional algorithm provides a point of reference for higher

dimensional algorithms. Often, numerical procedures developed



Figure 2-1. ©Noah's recording geometry on the left and ours on the
right. Noah believed that the large problem with multiple
reflections was mainly due to the presence of the free surface.
By effectively removing the free surface, Noah eliminated the
disturbing amount of multiple energy associated with reflections

off the sea surface.



for the 1-D case may be needed in solving the 2-D problem (such as
source waveform estimation). Finally, the 1-D approximation makes the
problem immediately tractable and results in a very simple algorithm of

practical value.

One-Dimensional Algorithm

The layered media approximation is that the earth model is a func-
tion of depth only. We will also assume that the source is a vertically
incident plane wave. To synthesize Noah's seismogram from ours we
place all receivers at the same datum and equate the Z-transfer function
G(Z) of the earth beneath the free surface as deduced from our experi-
ment and that of Noah's. This follows from the assumption of plane
layers and plane waves; that is, we may make the sweeping statement that
the earth behaves as a one-dimensional, time-invariant, linear system.
As such, it is completely described by the transfer function

G(Z) = U(2) /D(Z) where U and D are the Z-transforms of the

upcoming and downgoing waves, respectively. In the original geometry we
have the upcoming waves - R(Z) , the surface reflection seismogram, and
the downgoing waves consisting of the ideal, impulsive plane source 1
and R(Z) reflecting off the free surface.

In the above definition for the reflection seismogram, being only
the upcoming wave, we have excluded the possibility of recording the
direct path arrival of the shot. In practice we do record a direct
arrival, but because of always finite shot-receiver offset, we receive
the horizontally travelling source waveform. We will later see how we
may use the 1-D algorithm itself to estimate the desired vertically
transmitted source waveform. Thus, we disregard as unmeasurable and

unmodeled the early portion of the seismogram containing the shot waveform.



Noah's upcoming waves are defined as - C(Z) while the downgoing

wave is simply the shot since the free surface is absent. Thus,

U(Z)
G(z) 4 D(Z) surface (2-1)

where U , D are the up and downgoing waves seen by the receivers.
For the same earth below and same datum above we may equate the transfer

functions for both geometries.

U(2) = ~CZ) _ -RZ) (2-2)
D(Z) V surface 1 1+R(Z)
so that the desired transformation is
c(z) = _R@) (2-3)

1+R(Z)

In order to do the transformation of (2-3) a necessary condition is

that 1 + R(Z) be causally invertible or physically realizable, since
¢ = 0 for t<0 . In the ideal 1-D case before us, this is guaranteed
since it may be shown that the quantity 1 + R(Z) is minimum-phase
(Sherwood and Trorey, 1965). Thus, we may assume that any polynomial
divisions by 1 + R(Z) will be numerically stable.

If in equation (2-3) we expand the time functions in 2 and

multiply we have
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then identifying and equating coefficients of like powers of Z such as

c0 = r0 = 0
¢, = rl
c2 = r2 - rl



t-1
e, = r. - z S Tek t=1,2,... (2-4a)
=1
or
t-1
r, = ¢ * I roe ., » which define (2-41b)
k=1

recursions involving the feedback of past computations. Thus, the
recurrance (2-4a) indicates how to develop a new point on Noah's
seismogram from the convolution of the previously computed portion onto
the original reflection seismogram. Equation (2-4b) is the procedure

for computing our seismogram, given Noah's. Note that, in this formula-
tion, the reflection seismogram is composed of a primary  part .
added to a predicted, deterministic multiple part r*c . Therefore,
equation (2-4a) may be viewed as a decomposition to yield the unpredic-
table information by a subtraction of the predictable multiples from the
seismogram, as illustrated in Figure 2-2. Thus, like statistical
prediction-error deconvolution we subtract off the self-prediction of the
data. Unlike deconvolution, however, the ''filter" is the deconvolved
seismogram itself. Noah's deconvolution is a deterministic decomposition
based on relative amplitudes. No spectral estimates or assumptions about

phase need be made.

The Practical Problem

There are several problems which arise in dealing with realistic

cases, either synthetic or field data. One is that of computational
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Figure 2 - 2. Noah's transformation predicts multiples by the convolu-
tion of earlier multiples onto the primaries. Noah's seismogram
C operates as a prediction "filter" on the reflection data R
to yield a prediction of the multiples which are then subtracted

from the data. Thus, the "filter'" is the deconvolved data itself.
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efficiency, since the number of operations for a trace n samples

long is n(ntl)/2 multiplies and adds. For a typical length seismogram
such a growing numerical procedure quickly becomes undesirably expensive.
The solution to this is recognizing and including only the important
terms in the summation. This will be discussed in the following

section where we consider the various classes of multiples.

The other problem of practical interest is that so far we have not
taken into account a realistic source waveform of finite duration and
bandwidth. We shall rewrite the transfer function equation again,
this time including a vertical shot pulse B(Z) originating at t=0 .

In this case our up and downgoing waves are

U = -R(Z) = - B(Z) R(Z) (2-5a)

D = B(Z) + R(Z) (2-5b)
and Noah's are

U = -C(2) = -B(z) Cc(@) (2-6a)

D = B(Z) (2-6b)

where the wiggle denotes the reflected wave with B as the source
instead of 1 .

Thus, equating transfer functions, we have

c@ _ R(Z) -

B(Z) B(Z)+R(Z) (2-7)
Now, define an inverse of B to be H(Z) A B_l(Z) , and dividing
through equation (2-7) by H we have

E(z) = ___R@) (2-8)

1+H(Z)R(Z)



The result of including the source waveform affects only summation of

~

c onto Tr . Identifying and equating like powers of Z in equation

(2-8) results in a similar recurrance pair similar to (2-4a) and (2-4b)

c, = T, - h *kzl ¢ Tog (2-9a)
r, = c, + h *kzl Ty Sk (2-9b)

The function of the source inverse H 1is to modify the result of
convolving ¢ and ¥ . This is a modification to both scale and color
since, in the process of convolving ¢ and ¥ , the source waveform-
squared will not only be spread out but also its center of gravity will
be delayed.

Therefore, in designing the form of the inverse operator H it
should not only whiten B but advance it up to its original position
as illustrated in Figure 2-3. Recall, though, that we have not, in
general, allowed ourselves direct access to the vertical path waveform
B on the data. However, we may consider the case where the various
multiples are distinctly separated in time as in figure 2-3. There we

may estimate H directly from the multiples. Assuming only multiples

and no primaries exist in the gate N3e to N4e we have that
Et = 0 for N3e<t<N4e . Further that the primary generating the
multiple lies in the gate Nle to N2e . Thus equation (2-9a)
becomes
N2e
= r -— Z i~ i T £ £ -
0 r }1*k;Nle N for N3é~ t N4e (2-10)

That is, the inverse waveform may be estimated from the relation between
the primary convolved on itself and the multiple. In the examples we

have used a least-squares estimator for h by solving the over-
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Figure 2 - 3. Estimation of the inverse source wavelet H(Z).
H 1is designed to be anticausal such that the source waveform-
squared is contracted and pushed back in time. Where the
multiples are distinct in time we may estimate h from the rela-
tionship between the primary convolved with itself and the lst

multiple, Ml = hxP%xP .
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determined problem

N4e N N2e . 2
min I [ r, - h+ I r, Ty ] (2-11)
h t= k=N
3e le

where h 1is chosen to be anticausal.
Therefore, having estimated h , we apply it to all the data ¥ and

compute Noah's seismogram with the recurrance
p

t-1
c, = I, - kzl ¢y rt-k , rt—k = h % T (2-12a)
or synthesize reflection data by
t-1
r, = ¢, + kil TSk s Cop = h % . (2-12b)

Classes of Multiples

The other problem of practical interest was noted earlier as
involving the computational efficiency in dealing with typical length
records. By careful gating of the summation in the recursion, the computations
may largely be reduced to a linear function of record length. Additionally,
we gain a certain amount of control over the various classes of multiple
reflections we need synthesize or remove. Running the recursion without
any gates, as in equations (2-12a,b), will accomodate all classes of
multiples involving the free surface reflection. That is, in computing
Noah's seismograms from ours, we correctly model and eliminate all
classes of multiples that were absent in Noah's geometry. The only
multiples that are left unmodeled are those involving intrabed reflec-
tions. We may define intrabed multiples as those rays which suffer a

reflection on their upcoming path with the exception of reflections at



the free surface. Thus, since the Noah transformation does not model
intrabed energy it remains in the inverted or deconvolved data. As will
be discussed in chapter 3, in a practical application intrabed multiples
comprise a relatively small portion of the multiple energy distribution.
The important thing is that the disturbing amount of free surface
multiple energy is properly treated within the framework of the simple
model.

By neglecting intrabed multiples in the calculation, Noah's
seismogram c consists of only primary reflections or, to use the term

loosely, reflection coefficients. The summation in (2-12,a,b) may be

14

regarded as the convolution of r (downgoing ray)with ¢ (reflectors)

to yield a prediction of the multiple reflection. In Figure 2-4 the
ray path of the various classes of multiples are illustrated. Seafloor
multiples (a) and one of the structure pegleg paths (c) are generated
by the interaction of the downgoing ray and the seafloor reflector (say
bounded by the gate N, - N ). The other ray path for structure

1s 2s

peglegs (b) is due to the reverberatory front portion of the downgoing

ray (say, with a time gate of le - sz ) interacting with the structure

reflector. Structure-structure paths (d) are generated directly in the
center of the summation. Therefore, time-coincident multiple paths may
be distinguished by splitting the summation in equations (2-12) into
gates where each class is generated. Since the gates of paths (b) and
(d) depend on travel time, such a description by gates is valid for any
number of reflectors.

Therefore, the computations can be made quite economical with just
the knowledge that the seafloor lies within some approximate time gate.

It is important, from a practical point of view, that the precise depth
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Figure 2 - 4. Gating arrangement for the convolution of the downgoing
ray r with the reflectors ¢ . By recognizing where the various
multiples arise in the summation, we may eliminate a large amount of
unnecessary calculations. For a seafloor reflector in the time gate
le to NZS the seafloor multiples (a) and short-path-last peglegs
(c) are modeled in the corresponding gate on ¢ . Long-path-last
peglegs (b) result from simple seafloor multiples leaving the water
layer and reflecting off the structure. Gating~in that early portion
of r (downgoing ray) including the seafloor reverberations models
these arrivals. In practice we limit consideration to two or three

bounces as the N12 to 1\129v gate. The structure-structure multiples

arise from terms directly in the centers ( k=t/2 ) of the summation.
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to the seafloor is not required. In the examples, we have neglected the
structure-structure term explicitly, although it is usually included in

one of the two gates, in using

max(t—le,st)
. = T, - § ¢ Teop for les (t—NZJL) < N28 (2-13)
k=N
1s
and
Nos Nog
c, = rt - E e Teok § T Cog o for t3>st + N22 (2-14)
—Nl k—le

Synthetic and Field Examples

Figure 2-5 illustrates the use of the one-dimensional algorithm in
modeling seafloor and pegleg multiple reflections. The frame at the
left of the figure is Noah's seismogram C recorded over an undulating
seafloor and a deep faulted structure. Ignoring long-delay intrabed
reflections this is the reflector model. The center frame is the 1D
reflection seismograms R as calculated with equation (2-12b). With
successive reflections in the water layers the seafloor multiples
become increasingly stretched by the seafloor topography. Beneath the
primary reflector at .7 sec. the structure pegleg arrivals appear.
They assume the geometry of the primary structure stretched by the
seafloor. Due to the multiplicity of paths, pegleg multiples decay at
a slower rate than simple seafloor multiples.

Using the center frame as data, the inverse source waveform h

was estimated from the relationship between the seafloor primary and

the first seafloor multiple. The inverse wavelet was estimated from
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a single channel and applied to all the data. The inverse transforma-
tion of equation (2-12a) was then used to compute Noah's seismogram
from ours. The frame at the right is the reconstruction of Noah's
seismogram.

Figure 2-6 illustrates the inverse transformation applied to a
section of field data. The center frame is a true amplitude near-
trace section recorded off the eastern shelf of Canada. The seafloor
reflection coefficient is relatively large (= 0.2 ) in this area giving
rise to a very strong pattern of seafloor multiples and peglegs. 1In
many instances the multiple arrivals overlie and mask the primary
reflections as in the case of the flat lying structure at 1.8 sec.

As in the synthetic example, an estimate of the inverse source
wavelet h was derived from the seafloor primary and first seafloor
multiple by equation (2-11). This single estimate was then applied to each
trace prior to doing the inverse transformation. The frame at the right
is the near-trace section after Noah's deconvolution. Note that the

fourth seafloor multiple M, interfering with the primary arrival has

4
been predicted and subtracted. Also note that the structure peglegs

Pm below 2.0 sec. have been almost completely extinguished. The

only noticeable problem appears to be with the first seafloor multiple.
This may be due to some residual normal moveout or problems in the process
of true amplitude recovery. The important thing is that the correct
amplitudes have been predicted for the pegleg multiple reflections and

that we may conclude, as did Noah, that free surface multiples account

for most of the disturbing amount of multiple energy.
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