Computer Program for Diffracted Multiple Reflections
by Don C. Riley
The following computer program represents the $1-\mathrm{D}$ and $2-\mathrm{D}$ forward and inverse algorithms as described in the March 1974 report (p. 83 135). Also included is a sample job stream (for IBM 360) that was used to compute the figures on p. 133-135 of that report.

```
//CRUNCH EXEC PGPI=NOAF
//*
//* PRINT DATA SET FOLLOWS
//* FORTRAN LOGICAL UNIT 06
//FT06F001 DD SYSOUT=A
//*
//* PRINTER-PLOT DATA SET FOLLOWS
//* FORTRAN LOCICAL UNIT 66
//FT66F001 DD SYSOUT=A,DCB=(BLKSIZE=133,FECFM=UA)
//*
//* PRIMARY TRACE SEOIENTIAL OUTPUT DATA SET FOLLOWS
//* FORTRAN LOCICAL UNIT 0Q
//FTOQFOO1 DD DSN=S091.PLOT,VOL=SER=SYS23,UNIT=2314,
// חISP=(NEW,KEEP),DCB=(RECFM=FB,LRECL=560,BLKSIZF=6720),
// SPACE=(TRK,(18,1), RLSE)
//*
//* PRIMARY TRACE SEQUENTIAL INPUT DATA SET FOLLOWS
//* FORTRAN LOGICAL UHIT }1
//FT11FOD1 DD DUMMMY
//*
//* SCRATCH DATA SET FOLLOWS
//* FORTRAN LOGICAL UNIT }1
//FT13FOO1 DD DSN=&&SCR,DISP=(NEW,PASS),UHIT=SYSDA,
// DCB=(RECFM=VSB,LRECL=284, BLKSIZE=7104),SPACE=(CYL,(3,2))
//*
//* COMTROL CARD DATA SET FOLLOWS
//* FORTRAN LOGICAL UNIT 05
//FT05F001 DD *
    &PHASE JOB=1,NX=70,NT=280,VEL=5000., SAMPRT =.004,DELX=50.0,
                        LINE ='TESPLT", SHOT = 0.0,SHAG = 1. O, LS = 15,PW=10. ,
    XDIP =30., PLOT =+1, KNORM=1,NORH=1024,&END
    &MODEL GEOL='CIPP',COEFF=-0.25,DEPTH=36.,RELIEF=4.0,
    CYCLES=1.5,MFAULT=0,DIP=0.0,&END
    &MODEL GEOL="LAYR",COEFF=0.05,DEPTH=141.,DIP=-1.5,
    MFAULT = 1, THROW=10., &EMD
    &MODEL COEFF=999.,8END
    &PHASE JOB=4,IDELZ = 10,N1S=25,N2S=60,N1L=25,N2L=134, &END
    &PHASE JOB=5,NU=15,NEST=1,NZAP=2,N1E=30,N2E=52,N3E=65,N4E=88,&END
/*
```


C......

REAL*4 S(ELS), GAIN(ENT)
INTEGER IHW*2(ENT), PLOT,T
COMPLEX*IE LINE
C......
C..... PRCBLEM DATA CCNMON AREAS FCLLCW

COMMON /GRID\$./ C(ENX,ENT)
CCMNON /GRICS2/ R(ENX,ENT)
COMNON /GRID\$4/GRIC4(ENX,EMZ)
COMNON /BLOCK1/ V1(ENX),V2(ENX)
COMMON /ELOCK2/ V3(ENX),V4(ENXI,V5(ENX)
COMMON./GLORAL/ RHO,NX,NT,NZ, SHOT,SNAG,LS,NZAP
C......

NAMELIST /PHASE/ JOB,NX,NT,LS,LU,IDELZ,VEL,CELX,LIAE,
a) SAMPRT,KNORM,DB,PLCT,SIGN,PW,SHCT,SMAG,
\hat{a} N2S,NZL,NIS,NLL,NEST,NZAF,NCRM,XDIP,
a N1F,N2E,N3F,N4E
PICKY(T) $=(1 .-2 \cdot * A R R * T * T) * E X P(-A R R * T * T)$
DATA LINE/' 1/
C.....
C..... BEGIN EXEClTABLE STATENENTS
C..... TURN CFF ERROR MESSAGES FCR FLCAT UNDERFLCWS CALL ERRSET(208,0,-1,1)
C.....

NSET=0
NPHASE=0
LARRAY= ENX*ENT
C..... SET DEFAULT VALUES
$J U B=9090$
LU= 13
IDELZ $=25$
VEL=5000。
SAMPRT $=.004$
KNORM $=1$
$\mathrm{CB}=0.0$
PLOT=:
$\mathrm{PW}=8 . \mathrm{C}$
DFLX $=50.0$
NEST=4
NORM $=1024$
XDI $P=39.0$
$\Delta K 0=3.14159 / 4$.
RHO $=1.7$
$A=0.0$

```
        SHOT=M.O
        SMAG=1.0
        LS=13
        NZ=OO
        NZAP=1
C.*.* TOP OF PHASE LCCF
    100 READ(5,PHASE,END=555,ERR=888)
            IFIJOR.FG.1.OR.JOB.FG.S.OR.JCR.EG.7) WRITF(6,GO4I LINE
            WRITE(6,905)
            NPHASE=NPHASE+1
            IF(JCB.LT.L.OR•JOB.GT.8) GO TC 555
            IF(NX*NT.GT.I \triangleRRAY) CO TO 6GE
            IFIHX,GT.ENXI GO TO 897
            IF(NSET.NE.C) GO TO 102
            NSET=1
            ARP=8./DW/PW
            NIDDLE=LS/2+1
            DO 101 K=1,LS
            T=K-MIOOLF
    101 S(K)=QICKY(T)
C..... BRANCH TO A PARTICULAR JOB
    102GOTO (1000,2000,200C,300C,4000,5000,5000,5000), JCR
C.....
    1000 VXCALC=2.*OELX/VEL/SANPRT
        OBIN=OB
        CALL EAFTH (C,NX,NT,S,LS,VXCALC,SAMPRT,DB,PW,R)
        IFICBIN.NE.C.I OB=DBIN
        CALL SETEX (SAMPRT, CE,GAIN,NT,KNORM,NX,IHWI
            IF(PLOT.NEOO) CALL WAVEX (R,NX,NT,IHW,PLOT,NCFM)
            WRITE(B,QOO) JOB,NX,NT,NZ,IDELZ,VEL,DELX,SANPRT,NCPN,KNORM,
            a CR,PLOT,LS,PW,XCIP,A,FHC,VXCALC,SHOT,SMAG
            WRITE(6,GC8) NPHASE
            GO TO 100
C.0...
    2000 CONTINUE
            SIGN=1.0
            IF(JCB.FQ.3) SIGN=-1.0
            CALL NOAH1DIC,R,N1S,N1L,N2S,N2L,S,LU,SIGN,
            a
                    NEST,N1E,N2E,N3E,N4E)
            IF(PLOT.NE.O.AND.SIGN.GT.O.I CALL WAVFX (F,NX,NT,IFH,PLOT,NORNI
            IFIPLDT.NF.O.AND.SIGN,LT.O.I CALL WAVEX (C,NX,NT,IHW,PLCT,NCRN)
            WRITE(6,900) JTB,NX,NT,NZ,ICELL,VEL, DELX,SAMPRT,NORM,KNCRN,
            a
                    DB,PLOT,LS,PW,XDIP,A,RHC,VXCALC, SHCT,SNAC
            WPITE(5,901) N1S,N2S,N1L,N2L
            IF(SIGN.LT.\.I WRITE(G.CO2) NIE,N2E,NXE,N4E,NEST,LU,NZAP
            WRITE(6,008) NPHASE
            GO TO 100
C.....
    3000 CONTINUE
        NZ = 1+NT/ICELZ
        IF(NZ.GT.ENZ) G] TO'8C9
        A=IDELZ/(2.*V \CALG)**2
        RHD=EXP(-AKN*VEL*SANFPT/14.*3.14159*[ELX*SINOXDIP/57.296)))
        IF(A.GE.0.166565) GO TO 898
```

```
    CALL SPONGEIC,R,NIS,NIL,N2S,N2L,S,ICELZ,A,R,GRIE4I
    IF(PLOT.NE.C) CALL WAVEX (R,NX,NT,IHW,PLOT,NORM)
    WRITE(6,COO) JOB,NX,NT,NZ,ICELZ,VEL,CELX,SAMPRT,NCEM,KNORM,
    a
        DB,PLOT,LS,Ph,XOIP,A,RHC,VXCALC,SHCT,SNAG
    WRITE(S,901) N1S,N2S,N1L,N2L
    WRITE(6,908) NPHASE
    GO TO 100
C.....
    4000 CONTINUE
    NZ=1+NT/IDELZ
    IF(NZ.GT,&NZ) GO TO &G9
    A=ICFLZ/(2.*VXCALC)**2
    RHO=EXP(-AKO*VEL*SAMPRT/(4.*3.14159*CELX*SIN(XDIP/57.296)))
    IF(A.GE.0.166666) GO TO 898
    CALL FLOODIC,R,NLS,N1L,N2S,N2L,LU,ICELZ,A,
        a C,NEST,N:E,N2E,N3E,N4EI
            IFIPLOT.NS.O) CALL hAVEX (C,NX,NT,IHK,PLOT,NORM)
            WRITE(',QOO) JOR,NX,NT,NZ,ICELZ,VEL,OELX,SANFRT,NCRN,KNORM,
            a)
                DB,PLOT,LS,PW, XDIP,A,RHC,VXCALC,SHOT,SMAG
            WRITE(6,901) N1S,N2S,A1L,N2L
            WRITE(6,002) N1E,N2E,N3E,N4E,NFST,LU,NZAP
            WPITE(6,908) NPHASE
            GO T] 100
C.....
    5COC VXCALC=2.*DELX/VEL/SANPRT
            CALL SETEX(SAMPPT,DE,GAIN,NT,KNORN,NX,IHW)
            IF(JOB.EQ.6) CALL WAVEIN(R,NX,NT,IHW,NORM)
            IF(JOB.EQ.T) CALL WAVEIN(C,NX,NT,IHW,NORMI
            IF(JOB.EQ.8) REWINO 11
            WRITE(6,9@0) JCG,NX,NT,NZ,ICELZ,VEL,DELX,SANFRT,NCRM,KNORM,
            a OB,PLOT,LS,Ph,XDIP,A,RHC,VXCALC,SHOT,SNAG
            WRITE(6,908) NPHASF
            GO TO 100
    555 WRITE(6,906)
        END FILE &
            STOP
C..... ERROR CONIITIONS
    606 WRITE(6,907)
            STJP
    888 WPITE (6,709)
        STOP
    897 WRITE(6,012) VX
        STOP
    898 WRITE(5,910) A
        STOP
    899 WRITE(6,911) NZ
        STOP
    900 FORMATI' &PARAMS JCR=',11.',NX=',I3,',NT=',I4,',Nz=',I2,
        a ', IDELZ=',13,',VEL=',F7.C,',DELX=',F5.1,',SAMPRT=',FE.4,
        a ', NORM=',15,',KNCRM=',11,',CE=',F6.1,',PLOT=',I2,',LS=',
        त I2,','/1H,10X,'PW=',F3.C,', XDIP=',F4.1,',A=',F7.6,',RHD=1,
        (a)F5.3,',VXCALC=',F6.2,',SHCT=',F6.2,',SMAG=',F5.1,',EENO,1
    901 FORMATI' EMGATES N1S=',I3,',N2S=',I3,',N1L=',I3,',N2L=',
        a [3,',&ENC')
```

```
    902 FORMAT(' &EGATES NlE=',I3,',N2E=',13,',N3E=',I3,',N4E=',
    a I3,',NEST=',I2,',LU=',I2,',NZAP=',I2,',&ENC'1
    904 FORMAT(' ***BEGIN JOB****,33x,'LINE IDENT = 1,2A8,41x,
    á****BEGIN JOB***()
905 FORMAT(1HO,121(1H-))
906 FORMAT('0***END JOB***',105x,****END JOB***')
GO7 FORNAT('O--MAIN--MEMCRY REQUEST TCO LARGE--')
908 FORMAT(1H,5G(1H-),' END FHASE ',I1,1X,59(1H-)/)
909 FORMAT('0--MAIN--ERR. JN NANELIST REAO--')
910 FORMAT('0--MAIN--UNSTABLE SCHEME, ABORT. A=',E14.t.)
9l1 FORNAT('0-MAIN-- NZ =',I6,' TCO BIG')
012 FORNAT('O--MAIN- NX =',IG,' TOD BIG'I
        END
C.....
C*##***********************************######*************************************
C##############********####******* S P C N G E ************************************
C**********************************************************************************
C.....
            SUBROUTINE SPDNGEIC,R,N1S,NIL,N2S,N2L,SS,IDELZ,
    a A,CCWN,SIGNAUI
C...................NOAH FORWARD VERSION 10.5....t/19/74...............
C..... GRIDS R AND DOWN ARE CVERLAID
    RFAL*4 C(NX,NT),R(NX,NT),SIGNAU(NX,NZ),DOWN(NX,NT),SS(LSS)
    COMMON /BLOCK1/ UPSUM(ENX)
    COMMON /GLORAL/ RHO,AX,NT,NZ,SHCT,SNAG,LSS
    INTEGER X,Z,T
C.....
    IDZ=IDELZ/?
C.....
    REWIND 13
C.....
    DO 1001 X=1,NX
    1001 LPSUM(x)=0.0
    OD 1011 T=1,N1S
    1011 WRITE\13) UPSUM
C.....
C..... GENFRATE INITIAL SHCT PATTERN
    CALL VSHOT(DOWN,SS)
C.....
    CALL SCANZ(C,DOWN,SIGNAU,IDELZ,A)
    N1L=NIL
    IF(M1L.IE.LSS) MIL=O
    LMIN=NLS+1
    LMAX=N2S+LSSS+1
    IF(M1L.EQ.O) LNAX=MINO(N2S+N2L,NT)
    DO 3031 T=LMIN,LMAX
    CALL SCANI(NIS,T,T)
    CALL SCANO(1,NIS-1,T)
    WRITEII3I UPSUM
    On 3021 X=1,NX
    DOWN(X,T)=DOWN(X,T)+LFSLM(X)
    3021 UPSUM(X)=0.0
    IF(MOD(T+IDZ,IDELZ),EG.T) CALL FASTISIOOWN,NX,MINCIT+IDZ,NTI,
    a
                                    A,+1,T)
```

```
    3031 CONTINUE
C.....
    IF(MIL.EQ.O) GO TO 3200
        LMIN=MINO(LMAX+1,NT)
        LMAX=MINO(N2S +N2I.,NT)
        DO 3131 T=LMIN,LMAX
        MAX=MAXO(N2S+1,T-M1LL+1)
        CALL SCANIIT-LSS,T,T)
        CALL SCANC(MAX,T-LSS-1,T)
        CALL SCANLINIS,MAX-1,TI
        CALL SCANO(1,NIS-1,T)
        WRITE(13) UPSUM
        DO 3121 X=1,NX
        DOWN(X,T)=ODWN(X,T)+UPSUM(X)
    2121 UPSUM(x)=0.0
            IF(MOO(T+IDZ,IDELZ).EG.C) CALL FAST15(DOWN,NX,MINC(T+IDZ,NT),
        \
                            A,+1,T)
    3131 CONTINUS
C.....
    2200 LMIN=MINO(LMAX+1,NT)
        DO 3231 T=LNIN,NT
        IF(M1L.EG.0) GOT! 3201
        CALL SCANI(T-LSS,T,T) •
        CALL SCANO(T-MIL+I,T-LSS-1,T)
        2201 CALL SCAN1(T-N2L+1,T-N1L,T)
        CALL SCANC(N2S+1,T-N2L,T)
        CALL SCANIINIS,N2S,T)
        CALL SCANOI1,N1S-1,T)
        WRITE(13) UPSUM
        00 3221 X=1,NX
        DCWN(X,T)=DOWN(X,T)+UPSUM(X)
    2221 UPSUM(x)=0.0
            IF(MOC(T+IOZ,IDELZ).EG.O) CALL FAST15(ODWN,NX,MINO(T+IDZ,NT),
        a
    3231 CONTINUF
C.....
    REWIND 13
    DO 4001 T=1,NT
    READ(13) LPSUM
    CO 4001 X=1,NX
    4001 R(X,T)=UPSUM(X)
C.....
    RFTURN
    END
C.....
```



```
C.....
    SUBROUTINE VSHOT(DOWN,S)
C................... SHOT PATTFPN
    CCMMON /GLOBAL/ RHO,NX,NT,NZ, SHOT,SNAG,LS
    REAL*4 DChN(NX,NT),S(LS)
    INTEGER X,T
```

```
C.....
    LSHCT=SHOT
    WSHCT = (SHOT -L SHOT )* 10.
C.....
    DO 1002 T=1,NT
    DO 1002 X=1,NX
    1002 COWN(X,T)=0.0
C.....
    L1=MAXOILSHOT-IFIX(WSHOT/2.t.4.999),11
    L2 = MINO(LSHOT + IFIX(WSHOT/2.*.4999),NX)
    IF(LSHOT•LE•O) LI=1
    IF(LSHOT.LE.O) L2=NX
C.....
    DO 1102 T=1,LS
    STEMP1=S(T)*SMAG
    DO 1102 X=L1,L2
    1102 OCWN(X,T)=STEMD?
    IF(LSHOT.LE.O) RETURN
C.*...
    LS 2=LS/2
    DO 1202 T=1,LS
    STEMP1=DOWN(L1,T)/S(LS2+1)
    STEMP2=DOWN(L2,T)/S(LS2+!.)
    DO 1202 K=1.LS 2
    X=LI-K
    IF(X.GE.1) DOWM(X,T)=STEMPI*SILS2-K+1)
    X=L2+K
    IF (X,LS.NX) DOWN(X,T)=STFMP2*S(LS2-K*1)
    1202 CONTINUF
C.....
    FETURN
    END
C.....
```



```
C
C.... 2-D FCFWARD LPCCMING HAVE PRCPAGATOR (EXFLICIT)
C.****
    SUBROUT INE SCANZ (C, ICWN,SIGNAU,IDFLZ,A)
    REAL*4 C(NX,NT),DOWN(NX,NT),SIGNAU(NX,NZ)
    COMMON /ELOCK1/ UPSUM(ENX), SCLRCE(ENX)
    COMNON /BL\capCK?/ TEMPT(ENX),TENPUYENXI,TEMFS(ENX)
    COMMON /GLOEAL/ RHO,NX,NT,NZ
    INTEGFP X,Z,T
C.*...
C..... ENTRY 'SCANZ' CLEARS THE UP-COMING WAVE INTEGRATPR, SETS SCNE
C.... CONSTANTS AND ESTAELISHES ADORESSABILITY FIR PASSEC ARRAYS.
C****
    IOT=IDELZ/2
    NXM1 = NX-1
    A2 =2.*A
    AH=A/2.
C.....
```

```
        DO 1012 Z=1,NZ
        DO 1012 X=1,NX
    1012 SIGMAU(X,Z)=0.0
        DO 1021 X=1,NX
        SOURCE(x)=0.0
    1021 LPSLM(X)=0.0
        RETURN
C.....
    ENTRY SCANI (MIN,MAX,T)
C.....
C.... ENTPY SCANI' INTEGRATES D
    Z='MAX' TO Z='MIN' ZT XX T
    UPON ENTRY SOURCE' CONTAINS THE SCURCE TERM AT Z='MAX'+1 ANC
    'UP' THE UP-COMING WAVEFIELD AT Z=*MAX'+1.
C......
    DO 2001 X=1,NX
    201 SOURCE(X)=0.0
    MAD=MIN+MAX
    DO 2072 IZ=MIN,MAX
    Z=MAD-IZ
    KZ=1+Z/I\capELZ
    DO 2011 X=1,NX
    TEMPS(X)=SOURCE (X)
    2011 SOURCE(X)=C(X,Z)*DOhN(X,T-Z+1)
    IF(MOO(Z+INZ,IOELZ).NE.C) GC TO 20&C
    DO 2021 X=1,NX
    TEMPU(X)=UPSUM(X)
    2021 TEMPT (X)=A2*(UPSUM(X)+SIGMAIJ(X,KZ))+AH*(SOURCE(X)+TEMPS(X))
    DO 2031 X=2,NXMI
    UPSUM(X)=UPSUM(X)+0. 5*(SOLFCE (X) +TEMPS(X))+
    a TEMPT(X-1)+TEMFT (X+1)-TEMPT(X)-TEMPT(X)
    2031 SIGMAU(X,KZ)=RHO*SIGMAU(X,KZ)+UPSUN(X)+TEMPU(X)
    UPSUM(1)=UPSUM(2)
    SIGMAU(1,KZ)=RHO*SIGNAU(1,KZ)+UPSUM(1)+TEMPU(1)
    UPSUM(NX)=UPSUM(NX-1)
    SIGMAU(NX,KZI)=RHO*SIGNAU(NX,KZ) +UPSUN(NX) +TEMFU(NX)
    GO TO 2072
    204000 2051 X=1,NX
    2051 UPSUM(X)=UPSUM(X)+0.5*(SOLRCE(X)+TFNPS(X))
    2072 CONTINUE
    RETURN
C.....
    ENTRY SCANO (MIN,MAX,T)
C.*.* ENTRY SCANO INTEGOATES C UP=-(V/2)*D UF FRCN Z=IMAX'
C.... TO Z=MMN* ZT XX
C.....
    MAD=MAX +MIN
    DO 3042 IT=NIN,MAX
    Z=MAD-IZ
    KZ=1+Z/IDELZ
    IF(MOD(Z+IDZ,IDELZ),NE.OI GO TO 3042
    DO 3021 X=1,NX
    TEMPU(X)=UP SUM(X)
    3021 TEMPT(X)=A2*(UPSUM(X)+SIGMAU(X,KZ))
```

```
            00 3031 X=2,NXM1
            UPSUM(X)=UPSUM( }
    3031 SIGMAU(X,KZ)=RHO*SIGNAU(X,KZ)+UPSLN(X)+TENPU(X)
C.....
    UPSUM(1)=LPSUM(2)
    SIGMAU(1,KZ I=RHO*SIGMAU(1,KZ) +UPSUM(1)+TENPU(1)
    UP SUM(NX)=UPSUN(NX-1)
    SIGMAU(NX,KZ)=RHO*SIGNAU(NX,KZ) +UPSUM(NX) +TEMPU(NX)
    3 0 4 2 ~ C O N T I N U E ~
        RETURN
C.....
    END
C.....
```



```
C.....
    SUBROUTINE FLDGDIC,R,N1S,M1L,N2S,N2L,LU,IDELZ,
    a A,UP,NEST,N1E,N2E,N3E,N4E)
C.....
C.......................NCAH INVERSE VERSION 7.0.....6/23/74...........
C..... GRIDS UP AND C ARF CVERLAID
C..... ALSO BCTH CVERLAIC ONTC CCMMON BLOCK gGRICI (CAREFUL,)
C.....
    REAL*4 C(NX,NT),R(NX,NT),UP(NX,NT)
    COMMON /BLCCK!/ SIGNAL(ENX)
    COMMON /GRID$L/ AA(EME,ELU),E(EME),Y(ENT),TEMP(ENT)
    COMMON /BLOCK2/ U(ELL)
    COMNON/GLORAL/ RHO,NX,NT,NZ, SHOT,SNAG,LS,NZAF
    INTEGER X,Z,T
C.....
    LSHOT=SHCT
    NEINIT=NAXO(1,LSHOT)
    NESTOP=NEINIT+NEST-1
    I\capZ=(IDEI.Z/2)-?
    N1SPl=N!S+1
    N2SP1=N2S+1.
    LUM1=LU-1
    M=N4E-N3E+1
    M2 =2*M+LUM1
    REWIND }1
    WRITE(13) R
C.....
C..... MIGRATE PRIOR TO ESTIMATING SOURCE WAVEFGRM INVERSE
    NZE=NINO(N4E+NZAP*ICELZ,NT)
    NTZ=NZE-N1S+1
    NZE=NIS/IDELZ
    DO 4021 T=1,NZE
    4021 CALL FAST15(R(1,N1S),NX,NTZ,A,-1,Z)
C.....
C..... FSTIMATE SOURCC hAVEFGRN INVERSE
    CO 2021 X=NEINIT, NESTCP
    00 2020 T=1,NT
2020 TFMP(T)=R(X,T)
```

```
    2021 CALL SOUASH(TEMP,NT,L,LL,N1E,N2E,N3E,N4E,AA,E,M2,Y)
    C..... RECAL CRIGINAL DATA
        REWIND 13
        REAC(13) R
        DO 2024 X=1,NX
        ON 2023 T=N1S,NT
        UP(X,T)=R(X,T)
        KMAX=MINO(NT-T+1,LU)
        SUM=0.0
        DO 2022 K=1,KNAX
    2022 SUM=SUM+U(K)*R(X,T+K-1)
    2023 R(X,T)=SUN
    2024 CONTINUF
C.....
    OC 2041 T=1,N1S
    CO 2041 X=1,NX
    R(X,T)=0.0
    2041 C(X,T)=0.0
    DO 2131 X=?,NX
    2131R(x,1)=1.0
C.....
    CALL SWEFPT(C,R,UP,A)
    DO 1022 Z=2,N1S
    IFIMOD(Z+IDZ,ICELZ).NE.0) GC TO 1022
    CALL FAST15(F,NX,NT-Z+1,A,+1,-Z)
    CO 1011 }x=1,\mathrm{ , NX
    1011 SIGMAU(X)=0.0
    CALL SWEEPO(NIS,NT,Z)
    1022 CONTINUE
C.....
    DC 3032 Z=N1SP1,N2SP1
    IFIMOD(7+IDZ,IDELZ).NE.OI GC TO 3021.
    CALL FAST15(R,NX,NT-Z+1,A,+1,-2)
    CALL ZAP(UP,R,C(1,Z-1),C(1,Z),A,ICELZ,Z)
    OO 3121 X=1,NX
    2121 SIGMAU(X)=0.0
            CALL SWEEPI (Z+1,NT,Z)
    GO TO 3032
    3021 CONTINUF
    CALL SWEEP2(Z+1,NT,Z)
    3032 CONTINUE
C.....
    N1L=N1L
    IF(M1L.LE.4) M1L=0
C.....
    LMIN=N2S+2
    NTMl=NT-1
    DO 5051 Z=LNIN,NTN1
    IF(MOD(Z+IDZ,IDELZ).NE.0) GO TO 5021
    CALL FASTI5(R,NX,NT-Z+1,A,+1,-Z)
    CALL ZAP(UP,R,C(1,Z-1),C(2,Z),A,IDELZ,Z)
    DO 5121 X=1,NX
    5121 SIGMAU(x)=0.0
    CALL SWEFFO(Z+N2L,NT,Z)
```

```
            CALL SWEEP1(Z+MIL+1,Z+N2L-1,Z)
            IF(NIL.EG.O) GC TO 5051
            CALL SWEEPO(Z+1,Z+M1L,Z)
            GO TO 5051
    5021 CONTIN!JE
            CALL SWEEP2(Z+M1L+1, Z+N2L-1,Z)
    5051 CONTINUE
C.....
            RETURN
            END
C......
```



```
C.0.**
C.... 2-D INVERSE UPCOMING WAVE PROPAGATOR
C.....*
    SUBROUTINE SWFEPT (C,R,UP,A)
    REAL*4 C(NX,NT),R(NX,NT),UP(NX,NT)
    COMMON / ELOCKI/ S IGMAU(ENX), SCURCE(ENX)
    COMMON /RIOCK2/F(ENX),OLCUIENX)
    COMMDN /GLOBAL/ RHO,NX,NT
    INTEGER X,Z,T
C****
    A2=2.*A
    \DeltaH=A/2.
    NXM1=NX-1
    PETURN
C.....
    ENTRY SWEEPO (NIN,MAX,I)
C.... MIGRATES FROM T=NAX: TC T=IMIN' WITH DIFFRACTIONS+NO SOURCE
C.****
    IF(MIN.GE.NT) RFTURA
    MAXNIN=MINO(MAX,NT)
    NAD=MIN+NAXMIN
    DO 2041 IT=MIN,MAXMIN
    T=MAD-IT
    DO 2011 X=1,NX
    OLDU(X)=UP(X,T)
    2012F(X)=A2*(CL\capU(X)+SIGNAU(X))
    00 2021 X=2,NXM1
    UP(X,T)=OLDU(X)+F(X-1)+F(X+1)-F(X)-F(X)
    2021 SIGMAU(X)=PमO*SIGMAU(X)+UP(X,T)+OLDU(X)
    UP(1,T)=UF(2,T)
    SIGMAU(1)=FRO*SIGMAU(1)+UP(1,T)+OLDU(1)
    LP(NX,T)=UP(NX-1,T)
    SIGMAU(NX)=FHO*SIGMAU(NX) +UP(NX,T)+CLDU(NX)
    2041 CONTINUF
    FETURN
C.....
    FNTRY SWEFOI (NIN,MAX,7)
C..... MIGRATES FRGM MAX TO NIN WITH DIFFRACTICNS, WITH SQURCES
C.....
    IF(MIN.GEONT) RETURN
```

```
    MAXNIN=MINO(MAX,NT)
    NAD=MIN+MAXMIN
    DC 3041 IT=MIN,MAXMIN
    T=MAD-IT
    OD 3011 X=1,NX
    OLDU(X)=UF(X,T)
    SnURCE(X)=C(X,Z)*R(X,T-Z+1)+C(X,Z-1)*R(X,T-Z+2)
3011F(X)=A2*(CLDU(X)+SIGNAU(X))-AF*SOURCE(X)
    DO 3021 X=2, NXM1
    UP(X,T)=OLDU(X)-0.5*SCURCE(X)+F(X+1)+F(X-1)-F(X)-F(X)
3021 SIGMAU(X)=RHO*SIGMAU(X)+UF(X,T)+CLDU(X)
    UP{1,T)=UP(2,T)
    SIGMAU(1)=RHO*SIGNAL(1)+UP(1,T)+OLCU(1)
    UP(NX,T)=UP(NX-1,T)
    SIGMAU(NX)=RHO*SIGMAU(NX) +UP(AX,T)+CLDU(NX)
3041 CONTINUE
    RETURN
C.....
    ENTPY SWEEP2 (MIN,MAX,Z)
C..... MIGRATES FROM MAX TC MIN WITHCUT DIFFRACTIONS, WITH SOURCES
C***
    IF(MIN.GE.NT) RFTURN
    MAXMIN=MINO(MAX,NTI
    NAD=MIN+MAXMIN
    DO 40!1 IT=NIN,MAXMIN
    T=MAO-IT
    DO 4021 }X=1,N
    4021.UP(X,T)=UP(X,T)-0.5*(C(X,Z)*R(X,T-2+1)+C(X,Z-1)*R(X,T-Z+2))
    4011 CONTINUE
            RETLRN
            ENO
C.....
```



```
C****
C..... INVERSE REFLECTION COEFFICIENT ESTIMATIR
COO.O
    SUBRCUTINF ZAPIUP,R,COLE,CNEW,A,IDELZ,Z)
    REAL*& UP(NX,NT),R(NX,NT),COLC(NX),CNEW(NX)
    INTEGFR X,Z,T
    CCMMON /BLOCK1/ SOURCE(ENX),F(&NX)
    COMNON/BLOCK2/EPLLS(&NX),ENINUS(&\LambdaX),SIGMAU(ENX)
    COMMON/GLOBAL/ RHO,NX,NT,NZ,SHOT,SMAG,LS,NZAP
Coo.*
    A2=2.*A
    AH=A/2.
    NXM1=NX-1
    MAXNIN=NINO(Z+NZAD*ICELZ,NT)
    MAD=Z+MAXMIN
C.***
    DO 101! }\textrm{X}=1,N
    1011 SIGMAU( }X\mathrm{ ) =0.0
    DO 1041 IT=Z,MAXMIN
```

```
    T=MAD-IT
    DO 1021 X=1,NX
    SOURCE(x)=COLD(x)*R(x,T-Z+2)+F(x,T-2+1)
    1021F(X)=A2*(UP(X,T)+SICNAU(X))-AF*SCURCE(X)
        DO 1031 X=2,NXM1
        EPLUS (X)=UP(X,T)-0.5*SOURCE(X)+F(X+1)+F(X-1)-F(X)-F(X)
    1031 SIGMAL(X)=RHO*SIGMAU(X) +EPLUS(X)+UP(X,T)
        EPLUS(1)=EPLUS(2)
        SIGMAU(1)=RHC*SIGNAU(1)+EFLUS(1)+UP(1,T)
        EPLUS(NX)=FFLUS(NX-I)
    1041 SIGMAU(NX)=RHO*SIGMAL(HX) +EPLLS(NX)+UP(NX,T)
C.....
    DO 20:: }x=1,N
    2011 SIGMAU(x)=0.0
    DO 2041 IT=Z,MAXMIN
    T=MAD-IT
    DO 2021 X=1,NX
    SOURCE(X)=COLC(X)*R(X,T-7+2)-F(X,T-Z+1)
    2021F(X)=A2*(UP(X,T)+SICNAU(X)I-AF*SCURCE(X)
    DO 2021 X=2,NXM!
    EMINUS(X)=UP(X,T)-0.5*SCURCE(x) +F(X+1)+F(X-1)-F(x)-F(x)
2031 SIGMAU(X)=RHO*SIGMAU(X) +ENINUS(X)+UF(X,T)
    EMINUS(1)=EMINUS(2)
    SIGMAU(1)=RHD*SIGMAU(1)+EMINUS(1) +UP(1,T)
    EMINUS(NX)=EMINUS(NX-1)
    2041 SIGMAU(NX)=PHC*SIGMAU(NX)+EMINUS(NX)+UP(NX,T)
C.....
        D0 3011 X=1,NX
    3011 CNEW(X)=(EMTNUS(X)+FPLUS(X))/(R(X,1)+EMINUS(X)-EPLUS(X))
C.....
            RETURN
    END
C.....
```



```
C******#########********************************#######**************************
C.....
    SubROUTINE FASTI5(WAVE,NX,NT,A,MODE,Z)
    REAL*4 WAVE(NX,NT)
    INTEGED X,T,Z
    COMNON/BLOCK2/ SIGMA(ENX),TENPU(ENX),TEMPT(ENX)
    COMMON /GLOBAL/ RHO
    CONST=2.*\Delta
    DC 101, }x=1,N
1010 SIGMA(X)=0.
    NXl=NX-1
    OO 1050 JT=1,NT
    T=JT
    [FINODE.FG.-1) T=NT+1-JT
    DO 1020 X=1,NX
    TEMPU(X)=WAVE(X,T)
1020 TFMPT (x)=CONST*(TEMFU(X)+SIGNA(X))
    DO 1030 X=2,NX1
    WAVE(X,T)=TEMPU(X)+TEMPT(X-1) +TEMPT (X+1)-TEMPT(X)-TEMPT(X)
```

```
    1030 SIGMA (X)=RHC*SIGMA(X)+WAVE(X,T) +TEMPC(X)
    hAVE (1,T) =WAVE(2,T)
    SIGMA(1)=RHO*SIGMA(1)+WAVE(1,T)+TEMPL(1)
    WAVE(NX,T)=WAVE(NX-1,T)
    SIGMA(NX)=RHO*SIGMA(NX) +WAVE(AX,T) +TENPU(NX)
    1050 CONTINUF
        RETLRN
        ENO
C.....
```



```
C•\bullet\bullet\bullet.
C.... 1-D FORWARD ANE INVERSF ALGORITHM
C*..* (2-D GRID IS NOT RFQUIRED)
    SUBFOUTINE NOAHIDIC,R,NIS,N1L,N2S,N2L,S,LI,
    a SIGA,NEST,NIE,N2E,N3F,N4FI
C.....
    REAL*4 C(NX,NT),R(NX,NT),S(LS)
    INTEGER X,T
C.....
    COMMON /GQID$1/ AA(ENE,FLU),B(EME),Y(ENT),TEMF(ENT)
    COMMON /GLOCK2/ U(&LU)
    COMMON /GLOBAL/ RHO,NX,NT,NZ,SHCT,SNAG,LS
C.....
    IFISIGNJ 20G1,1001,1001
C.....
C*.O R<-0 O=T<=NIS ARRIVAL FRFE REGICN
    10\1 DC 1012 T=1,N1S
        CO 101.2 x=1,NX
    1012 R (X,T)=0.0
C.***
C.....
    LMIN=N1S+1
        LMAX=N2S+N1L
        DO 1022 T=LMIN,LMAX
        KMAX=MINO(T-1,N2S)
        DO 1022 X=1,NX
        SUM=C (X,T)
        DO 1021 K=N1S,KMAX
    1021 SUM=SUM+C(X,K)\not=R.(X,T-K+1)
    1022 R(X,T)=SUN
C.....
C.0... T-NIL
C.0... R(T)<-C(T) + SUM C(K)*R(T-K+1) N2S<T<=N2S+N2L
C.....
    LMIN=LMAX+1
    LMAX=MIND(N2S + M?L,NT)
    DO 1042 T=LMIN.LMAX
    KMAX=T-N1L
    DC 1042 X=1,NX
    SUM=C(X,T)
    DO 1031 K=N1S,KMAX
```

```
    1031 SUM=SUM+C(X,K)*R(X,T-K+1)
    1042 R (X,T)=SUM
C.....
C..... N2S
C..... R(T)<-C(T) + SUM C(K)*R(T-K+1) + SUM R(K)*C(T-K+1)
C..... FOR N2S+N2L< < SHOPT AND LCNG PATH
        LMIN=MINO (LMAX+1,NT)
        DO }1072\mathrm{ T=LMIN,NT
        DO 1072 X=1,NX
        SUM=C(X,T)
        DO 1051 K=N1S,N2S
    1051 SUM=SUM+C(X,K)*R(X,T-K+1)
        DO 1061 K=N1L,N2L
    1061 SUM=SUM+R(X,K)*C(X,T-K+1)
    1072 R(X,T)=SUM
C.....
        OO 1092 IT=3,NT
        T=NT-IT+1
        KMAX=MINO(LS,T)
        DO 109? X=1,NX
        SUM=0.0
        DO 1081 K=1,KM\DeltaX
    1081 SUM=SUM+S(K)*R(X,T-K+1)
    1092 R(X,T)=SUNM
C.....
        RETURN
C.....
C..... INVERSE ALGORITHM FOLLOWS
C.....
    2001 M=N4E-N2E+l
        LUM]=['J-1
        M2=2*N+LUN1
        NEINIT=MAXO(1,IFIX(SHCT))
        NESTOP=NEIMIT +NEST-1
        OO 2111 X=NEINIT,NESTCF
        DO 2011 T=1,NT
    2011 TEMP(T)=R(X,T)
    2111 CALL SQUASH(TEMP,NT,U,LU,N1E,N2E,N2E,N4E,AA,B,M2,Y)
        DO 2132 X=1,NX
        DO 2032 T=N1S,NT
        C(X,T)=R(X,T)
        KMAX=MINO(NT-T+!,LU)
        SuM=0.0
        DO 2021 K=l,KMAX
    2021 SUM=SUM+1U(K)*R(X,T+K-1)
    2032 R(X,T)=SUN
    2132 CDNTINUE
C.....
    DO 2042 T=:,N1S
    D0 2042 X=1,NX
    F(x,T)=0.0
    20%2 C(X,T)=0.0
C.....
```

```
        LMIN=N1S+1
        LMAX=N2S+N:L
        OO 2052 T=LMIN,LMAX
        KMAX=MINO(T-1,N2S)
        DO 2052 X=1,NX
        SUM=0.
        DO 2051 K=N1S,KMAX
    2051 SUM=SUM-C (X,K)*P(X,T-K+1)
    2052C(X,T)=C(X,T)+SUM
C****
    LMIN=LMAX+I
    LMAX=NINO(NT,N2S+N2L)
    DO 2072 T=LMIN,LMAX
    KMAX=T-NLL
    DO 2072 X=1,NX
    SUM=0.
    DO 2061 K=N1S,KMAX
    2061 SUM=SUM-C (X,K)\not=R(X,T-K+1)
    2072 C(X,T)=C(X,T)+SUM
C.....
            LMIN=MINO(LMAX+1,NT)
            OC 2101 T=LNIN,NT
            \capO 2101 X=1,NX
            SUM=0.
            DD 2081 K=N1S,N2S
    2081 SUM=SLMM-C (X,K)*R(X,T-K+1)
            OO 2091 K=N1L,N2L
    2091 SUM=SUM-R(X,K)*C(X,T-K+1)
    2101C(X,T)=C(X,T)+SUM
C.....
            RETURN
C.....
            END
C.....
C.....
```



```
C
C*... INVERSF SOURCE WAVEFCRM ESTIMATOR
C***
    SUBROUTINE SOUASH (R,LR,U,LU,NI,N2,N2,N4,A,B,MI,Y)
C***
C\bullet\bullet.* NK SUM (RIT) N'2
C.... MIN SUM (R(T) - L* SUNR(T-K+1)R(K))
C\cdots\cdots U T=NZ K=N1
C.....
C.... M2=?*(N4E-N3E+!)+LL-1 = NO. EQUATICNS
C*..N N=LU = LENGTH OF FILTFR U
C.****
    PEAL*G F(LQ),U(LU), A(NZ,LL),B(M2),Y(1)
    INTEGER T,FLAG/9/
C.....
    IF(FLAG.NE.O)GO TO 10OI
```

```
        DO 10\div0 T=1,M2
        B(T)=0.0
        DC 1040 K=1,LU
    1040 A(T,K)=0.0
        FLAG=1.
    1001. CONTINUE
C.....
        I1=N!-1
        CO 4001 T=1, I1
    4001 R(T)=0.
        II=N2+1
        I2 = N3-?
        DO 4002 T=I1,I?
    4002 R(T)=0.
        II=N4+1
        DO 4003 T=I1,LR
    4003 R(T)=0.
C.....
        LIMIT=N4+LU-I
        OO 1020 T=N3,LIMIT
        SUM=0.0
        DO 101.0 K=N1,N2
    1010 SUM=SUM+Q(T-K+1)*K(K)
    1020 Y(T-N3+1)=SUM
C.....
        M=N4-N3+1
        DO 2020 T=:,M
        B(T+M)=R(T+N3-1)
        DO 2010 K=1,LU
    2010 A(T+M,K)=Y(T+K-1)
    2020 CONTINUE
C.....
C..... APPENO SNOOTHING MATRIX CF (1 -1) ON DIAGONAL.
                            TO LOW pasS the ESTIMATCR
        BIGB=0.0
        MZ=2*M
        DO 3010 T=1,M
        ABB=ABS(Y(T))
        3010 IF(ABB.GT.B IGB) BIGR=ARB
        DIF=BIGR/25.
        LUM]=LIU-1
        DO 3022 T=1,LIJML
        B(T+MZ)=0.0
        DO 3020 K=1,LU
    3020 A(T+MZ,K)=0.0
C.....
            A(T+MZ,T)=OIF
        3022 A(T+MZ,T+1)=-DIF
C.....
    CALL GOLUB (A,U,B,M2,LU,Y)
C.....
    RETUPN
    END
C.....
```



```
C.....
    Subroltine golub (A,X,B,N,N,U)
C.....
C.....A(M,N) ; B(MI GIVEN WITH M>N SCLVES FOR X(NI SUCH THAT
C.0... || B - AX || = MINIMUM
C.....METHOD OF G.GOLUR, NUNEFISCHE MATHFMATIK 7,20t-216 (1965)
C.....
    IMPLICIT REAL*P (D)
    REAL*4 A(M,N),X(N),R(N),U(M)
C.....
C..... PERFORM N ORTHOGONAL TR ANSFORMATIONS TO AI...I TO
C..... UPPER TRIANGULARIZE THE NATRIX
C.....
C.....
C.....
    DO 3010 K=1,N
C.....
    DSUM=0.ODO
    DO 1G10 I =K,M
    DAJ=A(1,K)
    1010 DSUM=CSUM+DAJ**?
            IFOOSUM.GT.1.OD-101 GC TO 1015
            WRITE(S,9CO) DSUM,K
        900 FORMAT(MOSINGULARITY IN GCLUB DSUM=',C15.6.5X,141
            GO TO 3010
    1015 CONTINUE
            DAI=A(K,K)
            CSIGMA=CSIGNIDSQRTIOSUMI,DAII
            DBI=DSQRT(1.0DOHDAI/CSIGMAI
            DFACT=1.OCO/(DSIGMA*CBI)
            U(K)=CB!
            FACT=DFACT
            KPLLS =K+l
            DO 1020 I=KPLUS,M
    1020 U(I)=FACT*A(I,K)
C......
C..... I - UU' IS A SYMMETRIC, ORTHOGONAL MATRIX WHICH WHEN APPLIEC
C..... tO A(...) WILL AMNIHILATE THE ELENENTS bELCh THE PIVOT
C..... DIAGONAL K
C.....
    DO 2030 J=K,N
C...... APPLY THE OFTHOGONAL TRANSFCRMATION
C.....
    FACT=0.0
    OO 2010 I=K,M
    2010 FACT=FACT+U(I)*A(I,J)
C.....
    DO 2020 I=K,M
    2020 A(I,J)=A(I,J)-FACT#U(!)
    2030 CONTINUS
```

```
C.....
    FACT=0.0
            DO 2040 I =K,M
        2040 FACT=FACT+U(I)*B(I)
        C.....
            DO 2050 I =K,M
        2050 E(I)=B(I)-FACT*U(I)
    C.***
        3010 CONTINUE
    C
    C..... BLCK SURSTITUTE TO RECURSIVELY YIELDXI.I
    C***
        X(N)=E(N)/A(N,N)
        LIM=N-I
    C.....
        DO 4020 I=1.LIM
        IFOW=N-I
        SUM=0.0
    C......
        00 4010 J=1,1
        4010 SUM=SUM+X(N-J+1)*A(IRCW,N-J+1)
    C..***
    4020 X(IROW)=(B(IROW)-SUN)/A(IRCW,IROW)
C.....
            RETURN
            END
C.....
```



```
C.****
            SUBROUTINE EARTHIC,NX,NT, SOLRCE,LS,VXCALC,SANFRT,
            a
                DR,FFW,DISPI
```



```
C......
C....*
C
C.....
C
C.....
C.....
C
C....NAMELIST CARD PARANETERS - CNE NANELIST STRING/STRUCTURE ELEMENT
* - *
C
C.0
C
C.....
C......
C
C
C.
    ENTOY POINT ARGUNENTS:
        C(NX,NT) = MODEL GRID
        SOURCE(LS) = SCLRCE hAVEFORN
        VXCALC = VERTICAL EXAGGFEATION IN THE CALCULATION
        SAMPRT = SAMPLING RATE IA SFCCNCS.
        OB = MINIMUM EXP. GAIN REQUIRED IN DB/SEC. (PETURNEO)
            'DCME' FCR CENTERED CCME OF WICTF 'FOCUS' GRID PEINTS
            -lAYR' FCR flat layef
            'DISH' FCR CENTERD CISH OF WIDTH 'FCCUS'
            'CIROI FOF CHIRP
            "MONO' FCR MONCCLINE WITH FLEXURE 'FOCUS'
            'BLOR' FCR BLCE CF hIDTR 'FOCUS' AT X='NLCC'
            "HOLE' FOR SPECIAL STRUCTURE #I WITH BOTTOM
                            'DEPTH' AND PELIEF 'RELIEF'
        COEFF = REFLECTICN CCEFFICIENT OF INTERFACE
C.... DIP = OIP OF INTERFACE IN DEGREES
```

```
C
            DEPTH = DEPTH IN GRIC POINTS TO RH SINE OR TOP OF STRUCTURE
            NFAULT= O NO FAULTS
            1 CNE CCWNTHFOWN FAULT WITH THROW 'THROL'
            2 DOWNTHPCWN GRABEN WITH THFOW "THROW'
                    THE INPUT FILE IS FEAD UNTIL | CCEFF | > 1.
                    REAL*& C(NX,NT),DISP(NX,NT),SCURCE(LS)
                            INTEGER GEOL,X,KTYPE(8)
                            NAMELIST/MOCEL/COEFF,DIP,DEPTH,RELIEF,GEOL,CYCLES,FOCUS,NFAULT,
0)
                                    THRCh,NLOC
    RICKY(T)=(1* - 2.*ARR*T*T)*EXP(-ARR*T*T)
    FAULT(X)=THRCW*MOC((()X-1)*(NFAULT+1|)/NX),2)
    DATA KTYPE/'SINE', DCME','LAYR', 'DISH', 'CIRF', MCNO', 'BLOR'.
a) HOLE*/
    ARR=8./PPW/PPW
    CO 1022 JT=1,NT
    DO 1022 X =1,NX
    CISP(X,JT)=C.O
1022 C(X,JT)=0.0
    MIDDLE=NX/2+1
    FLS2=(LS-1)/2.
    DR=200.
    NSTP=0
1031 DIP=0.0
    FOCUS=0.0
    CYCLFS=1.0
    NFAULT=0
    RELIEF=0.0
    NLOC=NX/2
    CFACT =1.0
    THROW=9.0
    PEAC(5,MODEL,END=999G,ERR=8888)
    IF(ABS(CCEFF).GT.L.O) GC TC 9990
    OO 1041 K=1.8
    IF(GECL.NE.KTYPE(K)) CO TO 1041
    KPICK=K
    GO TO 1051
1041 CONTINUE
    WFITE(G,9Cl) GEOL
    STOP
1051 SLOPE=TAN(DIP*0.01745)*VXCALC
    IF(KPICK.NE.8) GO TO 1101
    XHL=29.*NX/53.
    AHI=DEPTH-PELIEF
    BH1=(DEPTH**2-AH1**2)/X (1 **2
    \DeltaHl=AH1**2
    XH2=12.*NX/53.
    AH2=DEPTH-O.43*RELIFF
    BH2=(DEPTH**2*AH2**2)/XH2**2
    AH2=AH2**2
    IXH1=30.*NX/53.t.4995
    IXH2=43.*NX/53.+.4995
1101 CONTINUE
```

```
    MSTR=NSTR+1
    CBEST=-20.*ALOG10(ABS(COEFF))/(DEPTH*SAMPRT)
    DB=AMINI (DB,DEEST)
    WFITE(6,GO2) NSTR,GFCL,COEFF,IIP,DEFTH,RELIEF,NFAULT,THROW,
    a FOCUS,CYCLES,CBEST
    DC 1081 X=1,NX
    BURIAL=(LS/2)+ CEPTH+FAULT(X)+SLCPE* (x-1)
    GO TO (2001,2002,2003,2004,20C5,2006,2007,2008),KPICK
2001 YD=RELIFF*0.5*(1.-COS((X-1)*CYCLES*6.283/(NX-1)))+EURIAL
    GO TO 2000
2002 YD=AMINI(((X-MIDDLE)**2)****RELIEF/FOCUS/FOCUS,RELIFF)+BURIAL
    GO TO 20dG
200` YD=BURIAL
    GO TO 2000
2004 YO=AMAXI(FELIEF-((X-MIDCLE)**2)*4**RELIEF/FOCUS/FRCUS,O.)+BURIAL
    CO TO 2000
20g5 YD=RELIEF*.5*(10-COS(11.+2.*(X-1.)/(NX-1))*
    A) 5.283*CYCLES*(X-1.)/(NX-1)))+BURIAL
    GO TO 2000
20CE YD=RELIEF*(.5+.31 83!*ATAN(1X-NX/2)*2./FOCUS))+BURIAL
    GO TO 2000
2007 CONTINUE
    IF(IAES(X-NLOC).GT.IFIX(FGCLS)) GO TO 1081
    YD=BURIAL
    CFACT=COS(1.570796*(x-NLOC)/(FOCUS+.E))
    GO TO 2000
2008 CONTINUE
    IF(X.LE.IXHL) YD=(LS/?)+SQRT(AHI+BH1*(X-1)**2)
    IF{X.EQ.IXH1+1) SLOPE={SQRT(AH?+BH2*(NX-IXH2)**2)
    a
        -CEPTH)/FLOAT(IXH2-IXH1)
    IFIX.GT.IXH1.AND.X.IT.IXHZI) YC=(LS/2)+DEPTH+SLOPE*(X-IXHI)
    IF(X*GE.IXH2) YD=(LS/Z)+SQRT(AH2+BH2*(NX-X)**2)
2000 ISTART=YD-FLS?
    IENC=YD+FLS2+.5
    IFIISTAFT.LT.1.OR.IENO.GT.NTI GO TO 1081
    CIST=YD-FLS?-ISTART
    C(X,ISTART)=C(X,ISTART)+CCEFF*(1.-OIST)*CFACT
    C(X,ISTART+1)=C(X,ISTART+I)+CCEFF*DIST*CFACT
    DO 1061 JT=ISTART,IENC
    T=YD-JT
1061 OISP(X,JT)=DISP(X,JTI+CCEFF*RICKY(T)
1081 CCNTINUE
    GO TC 103!
8888 WRITE(E,903)
    STOP
999G IFINSTR.EG.OI GO TO 1091
    WRITE(6,905) NSTR
    RE TURN
1091 WRITE(6,S06)
    STOP
001 FORNAT('O--INVALIN STRUCTLPF TYPE:',A4)
902 FORMAT(' &MODEL ',12,2X,A&,' COEFF=',FE.3,' DIP=',FE.?,
a ' DF:PTH=',FS.1,' FELIEF=',F5.1,' NFAULT=',I1,' THROW=',F5.1,
a ' FOCUS=',F5.1,' CYCLFS=',F4.1,' DE=',F&.0,',&END')
```

```
    003 FORMAT('O--NANELIST RFAD ERRCR')
    905 FORMAT(' &MODEL -',I2,'- STRLCTURE ELEMENT(S) INSERTEC - GC')
    906 FORMAT(' && NO STRUCTURE ELENENTS FCUND--ABORT')
    END
C.....
C*********************************************************************************
```



```
C.....
    SUGROUTINE WAVEX(A,NX,NT, IOUT,PLCT,NCRMI
```



```
    REAL*4 A(NX,NTI,GAIN(NT)
    INTEGER*2 ICUT(NT),FLCT*4
    PEAK=O.O
    FNORM=NORM
C.....
    GO TO (50,100,300),KNOFM
        50 PEAK=1.C
    GO TO 500
    100 00 200 J=1,NX
    DO 200 k=1,NT
    X=ARS(A(J,K))*GAIN(K)
    IF(X.GT.PEAK) PEAK=Y
    200 CONTINUE
    GG TO 500
    300 00 400 J=1,NX
    OD 400 K=1,NT
    40C PEAK=PEAK+ABS(A(J,K))*GAIN(K)
    PEAK=PEAK/(NX*NT)
    500 IF(PEAK.LT.1.E-10) PFAK=1.0
C.....
    SCALE=FNCFM/PEAK
    DO 700 J=1,NX
    CO 600 K=1,M!T
    IOUT(K)=SCALF*GAIN(K)*A(J,K)
    600 CONTINUE
    IF(PLOT.NE.O) WRITF(9,1000) ICUT
    1000 FORMAT(12(255A2))
    700 CONTINUE
C.....
    WRITE(E,GOZ) NX,NT,NGRM
    902 FORMAT(' &OUTPUT ',I3,2F X,I4,' FRAME WRITTFN WITF NDRM OF ', I5)
        IF(PLOT.EQ.-1) CALL CLT(NX,NT,A,PEAK)
C.....
    RETUPN
C.....
    ENTRY WAVEIN(A,NX,NT, IOUT, NCRNI
    FNOFM=NORN
    SCALE=1./ FNORM
    DO 701 J=1,NX
    READ(11,1000) IOUT
    OO E01 K=1,NT
    601 A(J,K)=IOUT(K)*SCALE/GAIN(K)
    7 0 1 ~ C O N T I N U E ~
```

WRITE(6,901) NX,NT,NCRM
901 FORMAT(' EINPUT ', I 3, 2H X, I4,' FFANEREAD WITH NCRM OF ', I5) IF (PLOT. EG- - I) CALL OUT (NX,NT,A,FNORN) RFTURN
C.....
C......

ENTPY SETEX(SAMPRT, DE,GAIN,NT,KNCRM, AX,IOUT)
SCALE $=0.1155245 * 0 B * S A N P R T$
DO $800 \mathrm{~K}=1, \mathrm{~N}^{\top}$
800 GAIN(K) $=$ EXP $(K * S C A L E)$
RETURN
END
C.....

 C......

SUBROUTINE CUT (NX,NZ, P, FNCRM)
C••••••••••••••••••••• PRINTER FLOT
REAL*4 P(NX,NZ)
DIMENSION ICHAR(21),LINE(120)
DATA ICHAR/'HHHH', 'GGGG', 'FFFF', 'EEEE', 'ODOD', C CCCC', 'TBPB',

$V R=1.1 .6$
WRITEI66,9001 VR
NXDCNE=0
$1011 \mathrm{NL}=\mathrm{MINO}(120, \mathrm{NX}-\mathrm{NXDONE})$
DO $1031 \mathrm{ID}=1, \mathrm{NZ}$
$0 \cap 1021 \quad 1 \mathrm{~L}=$? , NL
IVAL=10.+(P(IL+NXDONE,IC)*12•)/FNORN
1021 LINE(IL) = ICHAR(MINO(21, MAXO(1,IVAL)))
1031 WRITE(66, GOI) ID, (LINC(IL),IL=1,NL)
WRITE (66,902)
NXOONE = NXDONE+120
IF (NXCONE.LT.NX) GO TO 1011
RETURN
900 FORMATI VERTICAL EXAGGERATION OF PRINTER PLCT IS',FE. $2,{ }^{\circ}$ * THEV aFRTICAL EXAGGERATION IN THE CALCULATION'I
901 FORMAT(I4,120A1)
902 FRRMAT('1')
END

