100

Computational Techniques for Downward Continuation

Because of our basic belief that accurate velocity estimation and
multiple reflection removal ultimately hinge on techniques for downward
continuation (migration) we continued our efforts to improve techniques.
The continuing hassle has been the organization of computer memory.
Because we found the mid-point variable always on our inner loops we
began by looking at multiplexing. Then we discovered explicit techniques
which are stable, twice as fast, and which enable us to reorder calcula-
tions in a wide variety of ways. One attractive reordering is to get
the midpoint coordinate on the outer DO loop. This is like building
a machine which accepts seismic traces as inputs. After some appropriate
(space) delay migrated traces emerge as outputs. Internal memory is

independent of the length of the survey line.

J.F.C. 24 September 1974

101 May 10, 1974 se

THE BALANCED TWO-WAY MERGE ALGORITHM

by W. Scott Dunbar

The amount of seismic data from a particular survey is often
far too large to be stored in a computer at one time. Consequently,
if any rearranging (i.e., multiplexing, transposing, etc.) of this
data is to be done, special external sorting algorithms for use with
tapes or disks are necessary.

Entire books have been written on sorting (see reference).
Fortunately, most multiplexing or transposition problems can be reduced
to a "merging'" problem. Merging means the combination of two or more
files (records) into a single ordered file (record).

The simplest algorithm used for tape merging is the balanced
two-way merge. It proceeds by sorting two files (records) into one
and starts by dividing the original set of data into two parts.

The two-way algorithm is best explained by an example. Suppose
that one wanted to transpose a 3 row by 4 column array, A(i,j)
i=1,3; j=1,4 . The array may be stored on a tape as follows (by

columns) :
[a); ay) a3y 1l 2y, ay; a5, 1l ajg ay3 a55 10 ay, 2y, ag, |

The numbers within the brackets constitute one column of the array.

The transpose of the array would be a 4 row by 3 column array as shown:

[a0 21581521, 11 ay; ayy apgay, 1 [ag; ag, agyay, |

102

where the brackets now denote a column of the transposed array.

By inspecting these two arrays, it may be seen that the numbers of
the original array are in the correct sequential order, but not in the
correct consecutive order.

The merging algorithm uses four "working' tapes and begins by
dividing the original data into two parts. It is convenient to put

odd columns on Tape 1 and the even columns on Tape 2 as follows:

Tape 1: [a;; ay; a3y 1 [a3 ay53 a5]
I IIT
Tape 2: [ajy ayy a3y 1 [ay, ay, ag,]

I1 Iv

Tapes 3 and 4 are left blank. The two columns on each tape are called

"runs" or sorted portions of the array. Thus, there are 4 runs of

length 3. Tapes 1 and 2 are now rewound.
Looking at the transposed array, we see that a1 must be followed

by a and that a

12 21 must be followed by a etc. Therefore,

22
alternately picking one number from runs I and II, the following is

written on Tape 3:

Tape 3: [a5 a;) ay) ayy agy azy]

I

Alternately picking one number from runs III and IV, the following is

written on Tape 4:

Tape 4: [a;5 8y, ay3 2y, a35 a5,]

IT

103

Thus we have 2 runs of length 6; i.e., the run length has doubled and

the number of runs has been halved. All tapes are now rewound.

The next step is to alternately pick two numbers from runs I

and II and write on Tape 1 as follows:

Tape 1: [ajy a)y a3 3y, 8y1 3y, 353 8y, 237 Ay 233 a5,
which is the required transpose. Note that we now have one run of length
125 i.e., again the run length has doubled and the number of runs has
been halved.

Two passes (plus the original pass) were made of the data to do
the transpose. This is log2 4 , where 4 is the number of columns.

A logarithmic number of passes is typical of this type of algorithm.

Note that the number of columns is a power of two, but that the
number of rows is arbitrary. In this sense, the algorithm is something
like a Fast Fourier Transform. For an arbitrary number of columns, the
logic would have to be altered, probably in a similar manner to that of
a generalized Fourier transform (which is really a multi-way merge, a
generalization of the present two-way algorithm). To obtain a
number of columns which is a power of two, the array could be padded
with zeros. These could then be retrieved after transposition.

Most seismic data can be stored in the form of a three dimensional
array A(i, j, k) where i denotes time, j 1is the receiver-shot
offset and k is the number of records. The array would be stored
such that the innermost subscript, i , varies the fastest while the
third subscript, k , varies the slowest. That is, there are k two

dimensional arrays. To transpose time and receiver-shot offset

104

(1iand j) , the balanced two-way merge algorithm is used k times.
Transposition of the last two indices (j and k) is slightly
more difficult to visualize than the last example. However, if ‘we
realize that an element of an array can be a vector (or anything,
for that matter), the method required is the balanced two-way merge

itself. Consider the following example of an I by 3 by 2 array:

[A;; 108y 1A 1A 1TA,,T1A5,]

where Ajk represents a vector of length I. This can be transposed to
an I by 3 by 2 array by treating each vector just like the elements of
a 3 row by 2 column array. Note that the third subscript, k , must
be a power of two.

Shown overleaf is a subroutine that will transpose a M row
by 2N column array stored columnwise, where M and N are integers.
It is a rather inefficient routine, since it assumes one word records.
This, however, can be easily modified to suit a particular application,
such as the ones above. One change that could certainly be made is to
incorporate the initial read (off the original tape) and the initial
pass of the data into one operation. Thia would require internal storage.

Also shown is a test program that transposes a 9 row by 8

column array.

Reference

Knuth, D. E., 1973, Sorting and Searching;The Art of Computer

Programming, v. 3. Addison-Wesley.

TODDOODDIODDIDDDIDIDIDIDITDDNDTIDINDIDODIDNIIDIDIDNIDDIDDIDITIDDIIDIDIIDIDIDINOOIOND

[e o]

REMI

1

105

SURROUTINE TRANSP (NC,MR,NT,LU,NFT)

A MATRIX TRANSPOSE ROUTINE WHICH USES NN CNRE, BUT TAKES
LNG2 (MC) PASSES AT 4 TAPES USIMG A BALAMCED TUN-VAY MFDNE
ALGNRITHM,

IMPUT:

NC- MUMBER 0OF COLUMNS, MUST BE A PNWER OF Tun,

HR- HUMRER NOF ROWS, ,

NT- LOGICAL UMIT OM MWHICH NRIGINAL ARRAY RESINES,
LU= AlY ARRAY COANTAIMING THE 4 LORICAL UMNIT MUMRERS,

NUTPUT:
MET=-LOGICAL UMNIT O wHicH TRANSPNSE RESIDES,
COUMTERS:

NTR,HTW=- SUBSCRIPTS FOR LU ARRAY NPEMNATING A READ,YRITE
LNGICAL UMIT, THESE MAY BE IMITIALIZED TN AMY
EVEN MNUMBER,
MRUN- MNUMBER OF RUNS (SORTED PARTINMS) NF ARRAY DURING
NHE * ASS, :
1P~ MHUMBER OF ELEMENTS TN BE READ DURING > ASS AT ARRAY,

THIS PROGRAM ASSUMES OME REAL NUMBER PER RECNHRN, TO BE
EFFICIENT 1T SHOULD BE MONDIFIEN FNR MORE NUMBERS PER
NECORD, TRAMSPNSING THE LAST TWO INPRICES OF A THREE
DIMEHNSIONAL ARRAY COULDN BE DOME BY IMPLIEN NN LNOPS

N THE READ/WRITE STATEMENTS. THIS ALSO INCREASES

RECHORND LENATY, TRANSPNASING THE FIRST THUO [MDICES NF A
THREE DIMEMSIONAL ARRAY COULD BE NDOME RY A SERIES NE THN
DIMEHNSINNAL TRANSPOSTS, RUFFERIMG CNOULN ALSN RE YUSEN

It THE QOGRAM,

THE PROGRAM 1S SET UP TO TRANSPOSE AN TN DIMENSIONAL
ARRAY STOARED CoLUMIWISE,

REEERENCE:

DLE, KNUTH, 1973, SORTINAG AND SEARCHING; THE ART NF COMDUTER

" ROGRAMMING, V.3, (P,7),
SCOTT PUNBAR, MAY 1974,
INTEGER LU(L)
ND ALL TAPES
REWIND MNT
no 1 1=1,4

J=LU(1)
REWIMD)

o N

DD

O

106

IMITIALIZE COUNTERS

NRT2=NP*2
MTW=2
MTR=2
HRUM=MC
Hp=0

1P=1

AP =3
HADDR=1

THITIAL READ OF cOALUMNS OHTO LU(1) AND LU(2)

2

S

3

Po 3 1=1,NC
NTW=MoR(HTW, 2)+1
LUW=LUCHTY)

no o2 J=1,MHR

READ (MNT) X
WRITE (LUW) X
CONTINUE

NN THE TRAMNSPOSE

4

5

~N o,

100

nn 5 I=1,4
J=LU(CL)
REWIHD)
MRUN=MRU/2

no 7 1=1,HNRUM
HTW=MON (NTH, 2) +HADDY
LUW=LU(MTY)

o 7 J=1,MRT2
NTR=MOD(NTP, 2)+HANPR
LUR=LU(NTR)

PO 6 K=1,1P

PEAD (LUP) X

HRITE (LUW) X
CONTIHUE

MP=N &1

IF (HRUN.EN,1) 6N TN 8
IP=|P*2

HSAVE=NADDY
HADDE=NADDR
HADPR=NSAVE

an To 4

HET=LUY
WRITE (6,100) P
RETURN

FORMAT (//' THE TRANSPNST WAS COMPLETE AFTER',I4,' PASSES'//) .

Y1)

107

MAIN PROGRAM

DIMENSION A(9,8), B(8,9)
INTEGER Lu(h)

NR=9

NC=3

NT=20

DO 1 1=1,4
1 LUCE)=NT+1

DO 2 J=1,iiC

DO 2 I=1,HR

ACE,Jd)=d+0,1+]
2 URITE (NT) AC(1,J)
WRITE (6,100) ((A(l,d) J=1,NC),1=1,HR)
CALL TRAMSFJ(WC NR,NT, LU, NFT)
REWIND NFT
DO 3 J=1,NR
DO 3 l=1,NC
3 REAU (MFT) B(1,J)

WRITE (6,101) ((B(1,J),J= 1,NR),1=1,NC)
STOP

100 FORMAT (1X,8F5.2)
101 FORMAT (1X,9F5.2)

END

JOB CONTROL LAMGUAGE

//GO.FT20F001 DD DSHAME=ORIG,UNIT=2314L,

// SPACE=(TRK,1),DCB3=(RECFM=VBS, BLKSIZE 729&)

//GO.FT21F001 DD DS‘AHE NO1,UNIT= 291&,

// SPACE=(TRK,1),DC ‘(”ECEH VBS,BLKSIZE=7294)

//GD.FT22FQ01 DD DJMAWE MO2,UNIT= 231&,

// SPACE=(TRK,1),DCB=(RECFM=VBS,BLKSIZE=7294)

//GO.FT23F001 DD DSNAME=NO3,UHNIT= 231&

.‘4

// S? ACE=(TRK,1),DCB= (R[CFM VBQ,BILQIZE 7294)

//GO.FT2LFO01 DD DSHAME=NOL,UNIT=2314,

// SPACE=(TRK,1),DCB=(RECFM=VBS,BLKSIZE=729h)‘

1.10
1,20
1.30
1,40
1.50
1.60
1.70
1,80
1.90

2,90

108

NRIGINAL

3.10
3.20
3,30
3.40
3.50
3.60
3.70
3.80
3.90

4,10
4,20
4,30
4.40
4L.50
L.6O
L.70
4.80
4,90

ARRAY

5.10
5.20
5.30
5.40
5.50
5.60
5.70
5.80
5.90

6.10
6.20
6.30
6.40
6.50
6.60
6.70
6.80
6.90

7.10
7.20
7.30
7.40
7.50
7.60
7.79
7.80
7.90

THE TRANSPNSE WAS COMPLETE AFTER

TRANSPNSEN ARRAY

1.10 1,20 1.30

2.10
3,10
4,10
5.10
6.10
7.10
8.10

2,20
3.20
4,20
5.20
6.20
7.20
8.20

2,30
3.30
.30
.30
.30
.30
.30

O NOYUV

1.40
2.40
3.40
L.uo
5.40
6.40
7.40
8.40

1.50
2.50
3.50
4L.,50
5.50
6.50
7.50
83,50

1.60
2,60
3.60
.60
5.60
6,60
7.60
8.60

1.70
2,70
3.70
4,70
5.70
6,70
7.70
8.70

8.10
8.20
8,30
3.40
8.50
8.60
8.70
3.80
8.90

3 PASSES

1,80
2,80
3.80
4,80
5.80
6.80
7.80
8,80

1.90
2,90
3.90
4,90
5.90
6.90
7,90

8.90

