An Expanding Time Scale

by Jon F. Claerbout

Because seismic data is higher frequency at earlier times than at later times there will be occasional advantages to resampling the time axis. A time invariant spectrum is an asset in filtering and partial difference equation applications. A sensible expansion function is

$$t' = 2 (t_0 t)^{1/2}$$
 (1)

with the inverse relation

$$t = (t')^2 / 4 t_0$$
 (2)

We have

$$\frac{dt'}{dt} = (t_0/t)^{1/2} = 2t_0/t'$$
 (3)

The meaning of t_0 is that when $t=t_0$ then dt'/dt=1. Thus, we may choose $\Delta t=\Delta t'=4$ millisec at $t_0=2$ sec for a typical example. We get

	$t' = (8t)^{1/2}$ sec		
t	$\Delta t = (t/t_0)^{1/2} \Delta t'$		Points in Interval
	$= (8t)^{1/2}$ millisec		
			353
1/4	1.4		
1/2	2.0		146
1,2	2.0		207
1	2.8		292
2	4.0		
4	5.6		414
•	3.0		
		total	1412

These numbers seem to be reasonable although some of the 353 points in the early interval 0-1/4 might often be omitted. The last column was calculated by

No. Pts =
$$\int_{t_1}^{t_2} \frac{dt}{\Delta t(t)} = \int_{t_1}^{t_2} (t_0/t)^{1/2} dt / \Delta t'$$

$$\frac{2}{\Delta t'} \left[(t \ t_0)^{1/2} \right]_{t_1}^{t_2} = 707 (t_2^{1/2} - t_1^{1/2})$$

In differential equation applications we have say

$$P(t) = Q(t')$$
 and $P_t = Q_t, t'_t = Q_t, 2t_0/t'$.

Thus, an equation like $P_{zt} = P_{xx}$ becomes

$$Q_{zt'} = (t'/2t_0) Q_{xx}$$
.