2/74 se
141

Transformations and Migration Equations

Introduction by Steve Doherty

The coordinate transformations often used in the derivation of migra-
tion equations have three primary purposes. First, traqsforming the wave
equation often makes it easier to see how it can be modified so that it
becomes a one-way wave equation. One-way wave equations are important
because the cost of computing their solutions is much less than the cost
of computing solutions of the whole wave equation. Thus, if the situation
of interest is one which can be described by a one-way equation, it is
desirable to do so. In another vein, sometimes it is desirable to treat
each propagation direction separately. One-way equations offer an easy
method of separating the two wavefields.

A second reason for using non-cartesian coordinate frames is to
reduce the variability of the wave forms. 1In order to achieve reasonable
accufaéy, finite difference algorithms typically require sample rates 4
to 5 times the Nyquist rate. Thus,even simple problems like plane wave
propagation may require large numbers of grid points (and thus long
computation times) if they are solved in the cartesian coordinate system.
However, when viewed in a coordinate system which propagates with the speed
and direction of the wave, plane wave propagation is very simple (nothing
happens) and very coarse grids can be used. Aside from diminishing the
cost of solutions, reducing waveform variation is also important because
we wish to apply our finite difference algorithms to field data which is

often not sampled at the required rate. A CDP gather is an example of
this type of data. Before moveout correction the data is nearly spatially
aliased. However, after NMO it is densely sampled spatially.

A third reason for using coordinate transformations is to improve the
accuracy of the 'parabolic approximation', which is used to:obtain a

one-way wave equation. (The 'parabolic approximation' usually consists
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of assuming a second derivative of the wave.field with respect to the
propagation direction is zero). The closer the model (transformation
equations) follows the actual behavior of the waves, the less the
transformed wave forms must change as they are propagated and the

better the parabolic approximation becomes.

There are two ways to improve the accuracy of a migration equation
in a particular situation. One way is to change the coordinate system
so that it more closely models the expected behavior of the waves.
Another way is to leave the coordinate system unchanged and estimate
the second derivative rather than assuming that it was zero. Both of
these approaches appear to achieve the same result. However, the latter
approach has the disadvantage of requiring more dense sampling of the
wave form in the direction of propagation. The fact that one has to
estimate the second derivative means the wave field changes rather rapidly
as it propagates. This in turn implies that one must sample rather
densely in the propagation direction to maintain the accuracy of the
finite difference algorithms.

One might then ask: Why not model the expected behavior as closely
as possible so that very coarse steps can be used in the propagation
direction? Unfortunately, the more closely one models an expected behavior
the less well the model fits other situations. 1In addition, tight fitting
models tend to result in elaborate coordinate transformations and complicated
migration equations which sometimes are costly to solve. Thus;there is

something to be said for crude models and simple equations.
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A General Migration Equation

With the previous discussion in mind we will now derive a migration
equation in a general coordinate system.. We define migration as the
act of downward continuing both shots and receivers.

Our general coordinate system will be defined as follows

z = (e+h)/2 }: | g-s‘ |

w = (e-h)/2 (s5h)

0 —

y = (g+s)/2 (g,e) (0)

k = k(g-=-s,1t)
? ct reflector

d = d( g-s, eth, t )

We have a relationship between cartesian system on the right and
the transformed system on the left. The t is the travel time of
the reflected phase traveling from the shot to the geophone. z is the
average depth of the shot and receiver, y is the midpoint coordinate.
(If e=h, y is the horizontal coordinate of the reflection point.)
Special attention needs to be given to the as yet undefined coordinates
k, and d . Note that k is specifically dependent on shot receiver
offset, g-s . In some cases this will indeed be the definition, in
others we will use k to describe angle of emergence. d will be used as
a measure of reflector depth. As such it may have units of feet, or if
it is scaled by a velocity, it may have units of seconds. d could
be directly proportional to t or it may also be dependent on offset,
in which case the transformation from t to d is a type of normal
correction.

The reason that the coordinate system has 5 coordinates is that we

wish to downward continue both the shots and the receivers. Thus we need
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4 spatial coordinates to describe the location of the shots and
receivers. Since we have 5 coordinates we need to find a wave equation
which has 5 variables. We can write the wave equation in terms of

the shot coordinates

1 _ - -
Pt Pes t Eé P, =0Wgs), (eh)) (1)

By reciprocity we have

1
P+ ng + Eé Pp = 6((s-g) , (h-e)) (1b)

Adding (la) and (1b) we find that the wave equation for a source-free

region is:

1
1/2¢( Pee + Phh Yy + 1/2( ng + PSs ) + Ez Ptt =0 (2)

We will need to express the wave equation in the transformed
coordinate system in order to find the migration equation. To do this
we need to calculate coordinate transformation derivatives and use the

chain rule.

Since the disturbance is the same in both systems we have
P( e,h,g,s,t ) = Q( z,w,y,k,d )

where Q 1is the wave field in the new frame.

Using the chain rule we have
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1 1
= -+ = — - —
P QI ¥ Qdp ¥ Q k +Q 2 + QW dh @Bt -3 0

= + +
P Qy Ty + Qd dt M Qk kt Qz e Qw v

(il
=9
ctr
O
t
+
tal
r
O
=

t



145

Forming second derivatives being careful to keep all derivatives of

the coordinate transformation we get

F -
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2 2
Poe = dp Qg+ kg Qe + 24, Ky Qy

+ (dt dtd + kt dtk ) Qd +( kt ktk+dt ktd ) Qk

Since k 1is explicitly a function of g - s we have

Since d is explicitly a function of g -8 and e + h we have

IR SR 4

Using (3a) and (3b) and substituting into (2) for the transformed wave

equation we get

(3a)

(3b)
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2 1 2 1

‘1
7 Q

2 1.2 1,2
yy+(.dg+de.EZdt)Qdd+(kg.—62kt)Qkk
+1Q + % +2(kd—-l—dk)Q +d Q (4)
4 “zz 4 wa g ~2 't 't kd e ‘dz

c

= o0

+(d d ,+k d. -
(ggd g

gk " =20 dp dg tEk 4y NO,

ne

1
+ -+ -— — -+ =
( kg kgk dg kgd EZ( kt ktk dt ktd ))Qk 0

Equation (4) looks very formidable indeed. However, we shall find'
that for many of the transformations we might think of using most of
the coefficients are identically zero. To get an idea of the relative

importance of the terms of equation (4) we will evaluate (4) for some

specific coordinate systems. BEHOLD, Bc., THE NBEW

The Simplest Frame - No Moveout Correction

Let's define k and d by equations (5)

k = g-s , d = t+ (eth)/c

Thus k 1is just the shot receiver offset and d is a two way
travel time. d does not depend on g-s and thus the transformation
from d to t does not make any moveout correction.

For the ﬁartial derivatives needed in equation (4) we get

(6)
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Using the parabolic approximation to delete wa and sz and assuming
the transformation velocity c s equals the wave velocity ¢ we have

for the migration equation

C
Qz =% %y = © Y (8)

Since the travel time of a reflection from a particular interface
depends on shot receiver offset, the transformation from d to ¢t
(equation (5)) does not follow the actual behavior of the waves we are
attempting to model. Because the deviation of the model increases with
offset, we should expect the region of accuracy of the parabolic approxi-
mation and hence, equation (8) to be limited to small values of k .

In fact (8) is quite accurate for waves propagating at angles up to 15°
from the vertical, and thus it is valuable for migrating near trace data.
Equation (8) has the desirable attribute of simplicity, however, this
simplicity was achieved at the expense of accuracy. Equation (8) can
be made more accurate by estimating sz » however the severe sampling
problems (in k and 2z ) of the type noted in the introduction, remain

the limiting factor in the usefulness of the coordinate system.

A Moveout Correction Transformation

Let's define k and d by equations (9).
ko= g-s d=t(1-Cg-s¥ /2 M 2ee+n)i (9

Thus k 1is as before the shot receiver offset. d is still a two
way travel time. However, d now depends on offset. Examination of
the definition of d shows that, for a flat reflector , the arrival times

of the transformed data, Q( z,w,d,y,k ) , can be made independent of k .
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In other words, the transformation from t to d performs a.type

of normal moveout correction. Notice that if c, > the moveout velocity,
is very large, little moveout correction is done in transforming from

t to d. In the limit of large c  this transformation reduces to the
simple one already discussed.

For the partial derivatives of k we have

kg =1 kt = ktd = ktk = kgd = kgk =0 (10)

The derivatives of d are more difficult.

2
-1 - _(g-s)” \-1/2
d, - d, = (1 2.2 ) _ (11)
n
a4 = 53:5_ /(1 - _5:51_ y /2
8 cn t c11 £

In terms of ( z,w,d,y,k ) we have

d e k= d = (1+ 1+k ) 1/2 (12)

g cﬁ (d-22/3) ci (d-22/2)2

For the second partials we get

2
1 k k 2 .22 -1/2
d = — d = d =-——(1+k/9«) (13)
. gk c22 ’ gd CZR,Z td c22
n n n

where 2 = (d - 2z/¢)
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Substituting (10), (11), (12), and (13) into the migration equation

(45 and then using the parabolic approximation we get

__c = 2ck
Q. = "3 Yy ¢t 2, Qa TAQqtB Y
n
11 2 o1 o1 ) -
A=§(?2'?2)+ 22("2""3)}“ (14)
c c c g c c
n
2 2 2
sk, 1 1 kK /0 S +1 kK 1 1 ) =
B=ec i3z 3+t 5+ 23} ?2 23 (3 ~2)3°
c L cf ¢ c ol c 2 c R c c
n n n n n n
Equation (14) reduces to (8) if c, == as it should.
If ¢ = c,6 = ¢ equation (14) becomes
c 2k 1
Uz " 7% " Ut T Uat T U 1s)

Let's examine the new terms in (15). Notice that the coefficient

of de is just 2 tan(6) where O 1is the propagation angle of a particu-

lar ray path.

Consider the equation

Q, = R Uk R>0 (16)

where R 1is independent of d and k . Equatiom (16) has the solution

Q( z,k,d ) = Q(z+ & , d) an
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Thus equation (16) is just a shifter. It shifts Q toward (-)k
as it propagates Q in the (+) z direction. Similarly the Qdk term

can be thought of (approximately) as a shifter which shifts data toward

k = 0 with a velocity proportional to tan® . Thus the Qdk term

appears to do the major work in reducing the extent (in the k direction)

of properly moveout corrected data during downward continuation. The data

must focus around k = 0 when it is continued to the depth of the reflectors.
Now let's consider the Qdd term. Assume that there is no dip

and that we have done the moveout correction properly. In this case

ny =0 and Qkkz 0 . Ignoring the de term already discussed (15)

becomes

-1
Wz T T@2270) U - as

Assume either that we are far fromthe reflector or that we are working

at high frequencies, then 2:5%72 is slowly variable compared to 0
and equation (18) becomes
1 - z_
Qz or Q with solution Q = Qo exp( " ) (19)

In view of (19) we shall interpret the Qd term as a geometrical
spreading term. If we do a geometrical spreading correction to the data
before migration we can neglect the Qd term. With this in mind (15)

becomes

- -c - 2k
Qz = "7 Yy "¢ Que * @ 2z70) Wa (20)

In trying to analyze the function of the various terms in (15) we
have ignored coupling and examined each term separately. We have also
neglected variations in some coefficients. These approximations are

probably the cause of such things as the exponential (instead of
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(distance)—l) in equation (19).

Since we have done moveout correction we should expect (20) to be
useful at large propagation angles. The price we paid for this improved
accuracy was generation of the geometrical spreading term Qd » and the
shifting term de . In addition we have generated a pole at ( d-2z/c ) .
This pole occurs because the coordinate system is designed to focus the
waves to a point when the shot and receiver are located at the reflector
( when =z = %i ) .

Equation (20) has another undesirable property which limits its use-
fulness.rather markedly. Since this transformation does moveout correction,
the data will be a slowly variable ( in k ) at the earth's surface.

Thus we will be able to sample it very coarsely in k at z = 0 . However,

cd

( as we get near the reflector) energy begins to
2

as z approaches
focﬁsnear k = 0. Since the finite difference algorithms require about

8 points per wavelength, for accuracy, the data must be rather densely
sampled at z = 0 if we wish to describe the waveforms near the reflector.
This sampling problem can be overcome if we devise a transformation for
which the grid points get closer together as the reflector is approached.

We shall see that a coordinate system expressed in terms of emergence angle

has this property.

The Emergence Angle Frame

Let's define k and d by equations (21)

kK = (g-s)/cle d=t(1- (g-s)22? )% (ernye (1)
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The definition of d is the same as it was for the previous trans-

formation. Thus, the transformation from t to d performs normal

move correction. k 1is defined as the ray parameter ( sine where
R\

0 1is the propagation angle of a ray)

(s,h)
From the figure at the right shot
we see that sinf = §:§
ct

and thus we have

ray parameter = k sinb _ g-s

If the data is expressed in terms of ray parameter’the sampling
problem due to focusing at the reflector mentioned previously is unimportant.
This is because the coordinate system collapses as the distance to the
reflector is decreased. To put it another way, it's because energy propa-
gates at the same angle at the earth's surface and at the reflector, so
if we grid in terms of angle, sampling remains equally dense at all stages
of migration.

The partial derivatives of k needed for substitution into the general

migration equation are

1 g-s
k | —— k = - (22)
g EZ: t E2t2

Rewriting equation (11), for the d derivatives we have

—y2 YES. T ELMINATES
c et
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In terms of ( y,k,z,w,d ) we have

L 1-12e2y 172 - waaldHY? 1

& F2d-22/5 € (d-22/3) ® e (24)
a = - K 11252 y~1/2 g, = (1% )2

For the second partials we have

C .z “s . o ks (1-2k25%)

s 9 =z td tk
gk s % gd =2,2 22 s &
-3 0 4.=0 d,=+kes> 25

dgk = - 8 dgd = td = tk - c ( )
where s = (1- szz )1/2 and 2 = (d - 2z/c)

Substituting (24) and (25) into the migration equation (4) , using

the parabolic approximation and setting ¢ = ¢ we get (see the appendix

for some intermediate steps)

_a-k?H? 1, 2k(-k%D)

Cc
Q, = "3y 3,2 Qe Tz U © 22 e (26)

Comparing equation (26) to equation (15) we see that by defining k
as the ray parameter we have generated a variable coefficient for Qkk

and have introduced the Qk term. Notice that the term has vanished.

de

This occurs because we are working in emergence angle coordinates and
thus the data does not have to collapse toward k = 0 as the reflector
is approached. As before we can interpret the Qd term as a geometrical

spreading term.

Equation (26) has poles at z =-%§ in the coefficients of Qk and

Qkk . Computationally these poles are not a great problem. This is
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cd
5 -

To see that the solutions to (26) can't have radical behavior at the reflector

because the derivatives, Qk and Qkk s also become small at z =

we need only to remember that we can transform the data back to cartesian
coordinates at any receiver depth. Since the solutions are smooth functions
in cartesian coordinates they must also be smooth functions in the frame

we are discussing. The poles can be a problem if one is trying to use
equation (26) as the migration equation in a velocity estimation algorithm.
Picking a velocity to use in a migration equation implicitly estimates

a depth for all events on the record. If the migration velocity is not
correct, Qkk and Qk » need not be small when the data has been continued
to the estimated depth of the reflectors. In this case the effect of the
poles in (26) will be large and focusing will be forced to occur no

deeper than 2z = %Q,_

This problem can be reduced somewhat by choosing a migration velocity
which is always too large. In that case, focusing should occur before
the data is continued down to the estimated reflector depth.

Migration in this coordinate system has a disadvantage which may be
important when field data is being migrated. Since the coordinate system
collapses to a point at the reflector there is no way to describe the focus
of data which should focus at a location slightly different than the point
to which the coordinate system collapses. Again this problem can be
reduced by choosing a large migration velocity so that focusing occurs
before the coordinate system collapses.

Because of these problems, coordinate systems which completely collapse
at the reflector seem to be sub-optimal if the migration is to be used
as part of a velocity analysis algorithm. The type of coordinate system
necessary for this application is one which is a hybrid of the emergence
angle system and the simple system that was described first. One would like

a system which collapses, but not completely, as the data is continued to the

reflector depth.
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Evaluation of the Coefficients for Equation (26)

First we calculate the coefficient of Qdd . Substituting the

artials from (24) into the coefficient of Q in equation (3) we have
P ad

2,2 1 2 22,1, 1 1 ,. .22 .-1
o+ d] - =5 d = K1)+ D - (1) (A1)
c C C
(k’e?y 2.2 22 &
c c
2.2 -1 ‘
- k) -2

(o

= 0 if ¢ = ¢

Now we will evaluate the coefficient of Qd . From (25) we have

- - -1 -
dgq = dgg =0 . Thus d d 4 +k d —,(dd +kd, ) =kd

ttk kyd
c

1
gk g gk EQ t tk

Substituting from (24) and (25) we have

_ )
cd. -Lg - T i Y -1 1 (o a-ke? ke .
-1 - @k ] L -1 ,
g gk c2 t tk cz 2 (l—k2c2)3/2 c2 2 (1—k2c )
2 2
- 1k
= 3 : 53 YT (A2)
c“2(1-k"cY) ¢” 2(1-k“c7)
= -%— if ¢=c¢
=2

Now we will evaluate the Qk coefficient. The coefficient Qk in

equation (31) is

1
d k .+ kg k. - gz(,dt ktd + kt ktk ) R (A3)
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Substituting from equation (24) and (25) we have

- 2

_ 3 ) : o222
! fzs; .- (-k) L {; 1 ks | (-ks) (1-2k°¢ )‘} -2 G
c“s cl -sg [ 2 L -8

2-2

where s = ( 1-k“¢ )l/2

2 = (d-2z/c)

Simplifying (A4) we have

k k 1 k Lk 2-2 )
+_22-_22-52{2+2'2(l—2kc)}—R

c L c 2 L
(A5)
R = o 2kQ-ED) | kaatd .-
...—22 ————2—2——— or ¢ = ¢
€L [

Lastly we shall evaluate the coefficient of Qkk .

Substituting to (3) from (24) and (25) we have for the coefficient of

ek
2 1 .2 ( 1-k%e2 ) 1 K2 1-k%2)
k-5 k = 3 - 5, T
g 2 c?d—Zz/c) ¢ ( d-2z/c )
_ k%) (l_1 222
) Z 2 2" T2 kc )
¢ (d-2z/¢c) c
22 _
= LJ;ELEL_) if ¢ = ¢

cA(d-Zz/c)2



