previous up next print clean
Next: A SIMPLE derivation of Up: Fomel: Linearized Eikonal Previous: ACKNOWLEDGMENTS


Alkhalifah, T., 1997, Acoustic approximations for processing in transversely isotropic media: submitted to Geophysics.

Biondi, B., 1992, Solving the frequency-dependent Eikonal equation: 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1315-1319.

Fowler, P. J., 1994, Finite-difference solutions of the 3-D eikonal equation in spherical coordinates: 64th Annual Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1394-1397.

Gray, S. H., and May, W. P., 1994, Kirchhoff migration using eikonal equation traveltimes: Geophysics, 59, no. 5, 810-817.

Lavrentiev, M. M., Romanov, V. G., and Vasiliev, V. G., 1970, Multidimensional inverse problems for differential equations:, volume 167 of Lecture Notes in Mathematics Springer-Verlag.

Nichols, D. E., 1994, Imaging complex structures using band-limited Green's functions: Ph.D. thesis, Stanford University.

Popovici, M., 1991, Finite difference travel time maps: SEP-70, 245-256.

Schneider, W. A., 1995, Robust and efficient upwind finite-difference traveltime calculations in three dimensions: Geophysics, 60, no. 4, 1108-1117.

van Trier, J., and Symes, W. W., 1991, Upwind finite-difference calculation of traveltimes: Geophysics, 56, no. 6, 812-821.

Cerveny, V., Molotkov, I. A., and Psencik., I., 1977, Ray method in seismology: Univerzita Karlova, Praha.

Vidale, J. E., 1990, Finite-difference calculation of traveltimes in three dimensions: Geophysics, 55, no. 5, 521-526.


Stanford Exploration Project