previous up next print clean
Next: Synthetic Example Up: SCANNING HOMOTHETIC PARAMETER Previous: SCANNING HOMOTHETIC PARAMETER

Homothetic scaling of travel-times

Audebert 1996 shows that if the slowness field is globally scaled, ray geometry is unchanged. Audebert 1996 points out that starting from slowness field $S(\bar{x})_{orig}$, the travel-time from $\bar{x}_1$ to $\bar{x}_2$ is:
\begin{displaymath}
T_{orig}(\bar{x}_1,\bar{x}_2) = \int_{L_(\bar{x}_1,\bar{x}_2)} S_{orig} 
 dl
 \end{displaymath} (1)
where $L_(\bar{x}_1,\bar{x}_2)$ is the ray-path between $\bar{x}_1$ and $\bar{x}_2$. If we scale Sorig by a positive constant $\gamma$:
\begin{eqnarray}
T_{\gamma}(\bar{x}_1,\bar{x}_2) &=& \int_{L_(\bar{x}_1,\bar{x}_2)} \gamma S_{orig} dl \\  &=& \gamma T_{orig}(\bar{x}_1,\bar{x}_2)\end{eqnarray} (2)
(3)
$L_(\bar{x}_1,\bar{x}_2)$ is the same in both cases because the original Snell's law at each interface can be reduced from the scaled travel-time version:
\begin{eqnarray}
\gamma v_1 sin \theta_1 &=& \gamma v_2 sin \theta_2 \\  v_1 sin \theta_1 &=& v_2 sin \theta_2\end{eqnarray} (4)
(5)
As a result, scaled versions of the travel-time field represent valid focusing operators. By finding the scaled (by $\gamma$) version of the travel-time field that best focuses the data we get an estimate of the error in our interval velocity model.


previous up next print clean
Next: Synthetic Example Up: SCANNING HOMOTHETIC PARAMETER Previous: SCANNING HOMOTHETIC PARAMETER
Stanford Exploration Project
11/11/1997