previous up next print clean
Next: About this document ... Up: Berryman & Fomel: Iterative Previous: CONCLUSIONS


Arnoldi, W. E., 1951, The principle of minimized iterations in the solution of the matrix eigenvalue problem: Quart. Appl. Math., 9, 17-29.

Berryman, J. G., 1990, Stable iterative reconstruction algorithm for nonlinear traveltime tomography: Inverse Problems, 6, 21-42.

Berryman, J. G., 1994, Tomographic resolution without singular value decomposition: Mathematical Methods in Geophysical Imaging II, 1-13.

Fletcher, R., and Reeves, C. M., 1964, Function minimization by conjugate gradients: Computer Journal, 7, 149-154.

Fomel, S., 1996, Least-square inversion with inexact adjoints. Method of conjugate directions: A tutorial: SEP-92, 253-265.

Hestenes, M. R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear systems: J. Res. NBS, 49, 409-436.

Kleinman, R. E., and van den Berg, P. M., 1991, Iterative methods for solving integral equations: Radio Science, 26, 175-181.

Lanczos, C., 1950, An iteration method for the solution of the eigenvalue problem of linear differential and integral opertors: J.Res.Nat.Bur. Stand., 45, 255-282.

Paige, C. C., and Saunders, M. A., 1982, LSQR: An algorithm for sparse linear equations and sparse least squares: ACM Trans.Math.Software, 8, 43-71.

Saad, Y., and Schultz, M., 1986, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems: SIAM J. Sci. Statist. Comput., 7, 856-869.

Stanford Exploration Project