We define AMO as an operator that transforms 3-D prestack data with a given offset and azimuth to equivalent data with different offset and azimuth. To derive the AMO operator we collapse in one single step the cascade of an imaging operator and a forward modeling operator. In principle, any 3-D prestack imaging operator can be used for defining AMO. We initially cascaded DMO and ``inverse'' DMO, but, to derive an accurate expression for the spatial aperture of AMO, we had to use full 3-D prestack constant velocity migration and its inverse. As expected, the kinematics of AMO, as defined after NMO, are independent from its derivation.

AMO is not a single-trace to single-trace transformation, but it is a partial-migration operator that moves events across midpoints according to their dip. Its impulse response is a saddle in the output's midpoint domain. The shape of the saddle depends on the offset vector of the input data and on the offset vector of the desired output data , where the unit vectors and point respectively in the in-line direction and the cross-line direction. The time shift to be applied to the data is a function of the difference vector between the midpoint of the input trace and the midpoint of the output trace. The analytical expression of the AMO saddle, as we derive it in Appendices A and B, is,

(1) |

The surface represented by equation (1) is a skewed
saddle; its shape and spatial extent are controlled by the values of
the absolute offsets *h _{1}* and

Figure 1

The expression for the kinematics is velocity independent, but the lateral aperture of the operator does depend on velocity. An upper bound on the spatial extent of the AMO operator is defined by the region where the expression in equation (1) is valid. Equation (1) becomes singular when either of the following conditions are fulfilled

(2) |

Figure 2

Figure 3

The effective aperture becomes tiny when the azimuth rotation
is small. At the limit, the expression in
equation (1) is singular when the azimuth rotation
vanishes and the AMO surface reduces to a 2-D line. This operator,
corresponding to the case of *offset continuation*
Bolondi et al. (1984), has been derived independently by Biondi and
Chemingui 1994, Stovas and Fomel
1996, and (in a different form) Bagaini et
al. 1994. Its expression is given by the
following quadric equation,

(3) |

While the kinematics of AMO are independent from its derivation, the amplitude term varies according to the derivation. We present, and used for the AMO applications shown in this paper, the AMO amplitude that is related to Zhang-Black DMO. It can be shown that the choice of the Zhang-Black's Jacobian yields an amplitude-preserving AMO operator, at least when applied on regularly sampled common offset-azimuth cubes Chemingui and Biondi (1995). This particular choice of the Jacobian results into the following expression for the amplitude term,

(4) |

Notice that the frequency enters as multiplicative factor in the expression for AMO amplitudes. This term can be applied to the output data in the time domain by cascading a causal half-differentiator with an anti-causal half-differentiator.

11/11/1997