When considering plane waves propagating in a homogeneous anisotropic
medium, it is convenient to use the Christoffel equation. This
equation is simply the elastodynamic wave equation Fourier transformed
over space and time. It specifies the propagation velocity and
particle-motion (also called *polarization*) direction for each
plane-wave component in the Fourier domain. The Christoffel equation
takes the form of a simple eigenvalue-eigenvector problem, as follows:

(1) | ||

Solving the eigensystem in equation (1) is straightforward. For any wavenumber vector , the symmetry of the matrix ensures that the underlying eigenvalue-eigenvector problem is well-behaved: we can always find three distinct modes associated with three orthogonal directions of particle motion. This eigensystem has solutions only when its determinant vanishes:

For a general anisotropic medium, this equation requires the solution of a third-order polynomial in , where we can identify the term as the velocity of the plane wave with direction , which results in(2) |

The three roots, which correspond to the eigenvalues of equation (1) are the velocities of the three fundamental plane waves. The eigenvectors of equation (1) are, respectively, the three directions of particle motion. In general, none of these fundamental waves will be purely longitudinal or purely transverse.

11/12/1997