Stanford Exploration Project, Report 92, November 12, 1997, pages 357-?7?

356

Stanford Exploration Project, Report 92, November 12, 1997, pages 357-?7?

Fortran90: Introduction and use in 3-D
geophysical problems

Robert G. Clapp and Sean Crawley'

keywords: algorithm, arrays, three-dimensional, processing

ABSTRACT

There is a general consensus in the scientific community that object oriented pro-
gramming is the correct way to perform research. The object oriented approach
allows much more complex ideas to be explored by allowing the scientist to con-
centrate on ideas rather than algorithms. This feature is especially attractive in
problems such as we encounter in 3-D processing, where dealing with the huge
data size and irregularity is extremely cumbersome and prone to errors, in tra-
ditional languages such as Fortran77. We use Fortran90, built upon the existing
SEP90 accessors routines, as the building blocks to an object oriented processing
environment. Our initial efforts indicate that a Fortran90 base can provide the
flexibility of C++, while maintaining the simplicity of Fortran, to effectively solve
complex geophysical problems.

INTRODUCTION

In the last several years numerous attempts have been made to move geophysical
processing into an object oriented structure. There have been some successes, no-
tably the Rice Inversion Project. SEP also has attempted to move towards an object
oriented programming style ((1993),(1994)), but these efforts have met with only
limited success. There are three notable reasons why SEP’s attempts did not reach
fruition. First, C++, the object oriented language of choice, has a steep learning
curve, which is especially problematic since SEPers have traditionally been Fortran
77 programmers. Second C++4 contains pointers that make successful parallel pro-
gramming difficult. And finally it is only recently that SEP has moved into 3-D
processing where the benefits of the object oriented approach are magnified. The
introduction of SEP90(Biondi et al., 1996) and loan from SGI of a 16 node power
challenge has made the time ripe for a new venture into object oriented programming
using Fortran90. Fortran90, offers an attractive alternative that addresses many of

Lemail: bob@sep.stanford.edu,sean@sep.stanford.edu

357

358 Clapp & Crawley SEP-92

the shortcomings of C++. It does not suffer from the pointer problem of C++, so is
easily parallelizable. Finally, Fortran90’s basic structure is very similar to Fortran
77 which makes it easily accessible to all of SEP. What we propose is a Fortran90
framework that mirrors the general data structure of SEP1ib90, but provides ease of
use and freedom from much of the overhead coding that SEP1ib90’s relatively complex
data structure necessitates.

The paper will be broken up into five parts. The first portion will cover some
of the basic features of Fortran90 and our reason for choosing it at as our object
oriented language. We will then look into our SEP data structure and our routines
to create and destroy them. The next section will cover data I/O and our accessors.
The fourth portion will describe our philosophy on operators and solvers, and some of
the operators that we have currently implemented. We will conclude with our future
plans for an object oriented programming environment and our conclusions on its
usefulness.

WHY FORTRANY90?

Since 1989 there have been several major attempts to start C+4 object oriented
projects at SEP, all have met with only limited success and died off within a year of
their conception. This in spite of having some of the best minds at SEP behind them.
The reason for each projects’ failure vary, but two general problems undermined each
attempt.

Parallel Computing

SEP students have always pushed the limits of their available computing resources.
From 1991-95 the “limit” was our 32-node CM5 Connection Machine. Since November
1995, the limit has been set by a 16-node SGI Power Challenge. The CM5 paralleliza-
tion was most easily utilized with CM Fortran. For the SGI parallelization is possible
in C, and therefore C+4, but automatic parallelization is extremely limited due to
the way pointers are handled in each language.

As a result even the most enthusiastic supporters of C++ abandoned it when it
came to serious processing of real data. With SEP’s shift into 3-D, the importance
of doing high performance parallel computing is even greater.

Language Barrier

The SEPIlib base is written in C, but historically people at SEP have done most
of their coding in Fortran. Most students program exclusively in one language and
choose that language early at SEP. Fortran is the most common choice because

SEP-92 Fortran90 359

e all of the code in Jon’s books is written in the Fortran dialect Ratfor and

e it is the language most students know when they arrive at SEP.

Once a student feels comfortable in a language he is apt not to change, especially from
Fortran to C or C4++ where many concepts are extremely foreign. As a result SEP’s
C++ projects were inaccessible to large portion of the students and these students
ideas, operators, and solvers could not be contributed to the project.

Evolution of Fortran

Fortran90 has certain powerful features, which fill traditional gaps in Fortran pro-
gramming. The lack of dynamically allocatable memory, which has spawned a number
of workarounds, is no longer a problem. User-defined structures, long available to C
programmers (and a source of jealously for Fortran programmers) and operator over-
loading, available in C++, are now available as well. Unlike C, however, Fortran90
maintains Fortran’s limited definition of pointers, its complex valued variables, etc.,
which serve to make coding more straightforward. Fortran90 also has a number of
useful array manipulation intrinsics (matrix multiplications, transposes, etc.) which
further serve to make code simple, and clean.

Fortran90 implements its new features chiefly through the unifying concept of the
module. Modules provide what is termed an explicit interface between programs,
subroutines, data structures, etc. What this means is that it enables the compiler
to explicitly check the types and dimensionality of arguments as they are passed
from place to place, and thus to resolve overloaded operations and so forth. More
importantly, from the user’s point of view, modules and their explicit interfaces pro-
vide a single conceptual basis for the advanced programming tools available in the
language.

FORTRANY90 BASICS

This is not the right venue for a Fortran90 textbook. However, it is worth illustrating
certain important features that Fortran90 has and that we make extensive use of in
our data structure, and it is also worth displaying the easy and straightforward coding
style that Fortran90 encourages.

Dynamic Allocation

There are two main types of allocatable arrays available in Fortran90, the
allocatable and pointer arrays. Allocatable arrays must be allocated in the main
program, and so while they may be passed back and forth to subroutines, they may

360 Clapp € Crawley SEP-92

not be function results. Giving up use of functions means giving up overloaded and
user-defined operators, so we make very little use of arrays of this type.

The other main type of allocatable array is the pointer array. The name probably
strikes a certain amount of suspicious fear into pointer-wary Fortran programmers.
However, Fortran90’s use of pointers is in general simpler to understand and keep
track of than that of C or C++. Fortran pointers are referenced and used in exactly
the same way as the objects they point to. No confusion.

Either way, allocatable arrays are declared with the dimension attribute in addi-
tion to the usual real, integer, etc. Allocatable arrays also get the allocatable
attribute, pointer arrays the pointer attribute. Conveniently enough, the actual al-
location syntax is just like that understood by SEP’s fortran preprocessors SAW and
SAT.

integer :: nl1,n2,n3
real, allocatable, dimension(:,:,:):: alloc_array !3D allocatable array
real, pointer, dimension(:,:) :: p_array !2D pointer array

allocate(p_array(ni,n2))
allocate(alloc_array(nl,n2,n3))

Structures

Structures mean the same thing in Fortran90 as in C. They give the user the ability
to incorporate data of different types into several variables. This has obvious benefits.
For example, in Three Dimensional Filtering (TDF), subroutines are always passed
arrays and the arrays’ dimensions. A simple use of a structure would be to define
one that contained the dimensions as well as the array. Structures can make code
much easier to read, by greatly reducing the numbers of arguments being passed to
subroutines and functions. This same reduction also makes it possible to turn many
subroutine operations (convolution, for example) into binary functions, which may
be called as operators. Well thought out, this can result in very easy coding and
expository code. The structures that we use in our SEP data structure are described
elsewhere in this paper, but a simple example is given in the Modules paragraph
below.

Modules

Modules are the key unifying element among the new tools in Fortran90. They
are also the thing that replaces the most confusing parts of Fortran77. In particular,
common blocks, the scourge of old Fortran programs brought on by the need for global
variables without passing excessive numbers of arguments, can be completely done
away with. A module provides an explicit interface to any program or subprogram

SEP-92 Fortran90 361

that uses it, which is to say that whatever data structures and/or subroutines are
placed in a module are universally available, and in such a way that usage can be
checked by the compiler to prevent the easy corruption that is a risk of common
blocks.

A Fortran90 module consists of two parts. The first, the declaration part, is for
data structures and interfaces. As an example, the code fragment below contains a
simple data structure consisting of an allocatable real-valued vector and an integer,
which would presumably be used to hold the length of the vector. It also contains an
tt interface, which are used to overload operators, functions, and subroutines. The
interface is named myminus, which is the name that a calling program would use to
access one of the two module procedures listed. These are subroutines or functions
that are coded in the second part of the module. When compiling a main program
which calls one of these two subroutines or functions, the compiler decides which of
the two to use in the executable based on the arguments given to the subroutine. If
the arguments in the calling program match the first module procedure, that is used
in the executable, if the arguments match the second, then that is used. Or in other
words, compile time rather than run time checking.

module mymodule

type myvector

real, dimension(:), pointer :: vector

integer :: length

end type myvector

interface myminus

module procedure myminusvector, myminusscalar
end interface

The second part of the module is the subprogram part, which is where subrou-
tines and functions are put. The subprogram part of the module begins with the word
contains. Below is continued the example module, with two subroutines correspond-
ing to the two module procedures listed in the first part of the module. The first
multiplies a vector by negative one, the second multiplies a real number by negative
one.

contains

subroutine myminusvector (inputvector)

type (myvector):: inputvector
inputvectorivector = inputvectorvector * -1.
end subroutine myminusvector

subroutine myminusscalar(inputscalar)
real :: inputscalar

362 Clapp & Crawley SEP-92

inputscalar = inputscalar * -1.
end subroutine myminusscalar

end module mymodule

It is the explicit interface, half created by the module, that allows the checking
required to resolve which subroutine to call. The other half of the interface comes
from the calling program, which must include the line use mymodule. Note that the
potential for ugliness brought on by use-ing many modules from a given program
is easily averted, because modules may use other modules, and thus be chained
together. Our SEP Fortran90 library contains many modules, which are joined by
use association in a single module called sep_£90 mods. Any program which simply
uses this one module will have access to all the modules in the library.

Intrinsics

Of more superficial value than modules and structures, but beneficial for their clarify-
ing effect on code, are a number of array intrinsic functions introduced in Fortran90.
Things like transpose, matrix multiplication, dot product, etc. are predefined as func-
tions. Of course, these are all easy to code and forget as short subroutines in any
language, but they are beneficial in this form nonetheless, because they are (in general,
but dependent on the compiler) coded in assembler and very efficient, and because
they are very clear and generally lead to code with fewer subroutine calls, arguments
passed, and so forth.

STRUCTURE

Our data structure was designed with the goal of mirroring SEPlib90. Seismic data
exists primarily as traces, regularly sampled in time, and regularly or irregularly
sampled along various gridding axes, which may be spatial, such as midpoint and shot
location; or non-spatial, such as shot number. In SEP1ib90, separate grid and header
files are used to represent the regular (binned) and irregular properties, respectively,
of a given data set.

Our Fortran90 structure is similar, using two levels of defined data type to achieve
this representation. The basic units are the trace, sep_tr and the header sep_hdr.
The sep_tr type consists of a logical flag declaring whether or not that particular trace
exists, and one each of complex, real, and integer valued allocatable vectors. One of
these will be allocated for an existent trace, dependent upon the type of the dataset.
The sep_hdr type is analogous, consisting of a logical flag which states whether or
not a given header exists, and allocatable real and integer arrays for storing header
keys. These types are like the data and header records of a SEP1ib90 data set.

SEP-92 Fortran90 363

Structure is given to these random traces and headers through organization into
larger arrays, which have axes analogous to SEPIib90 grid axes. A given data set
actually has two such arrays, with each element in the array a pointer either to a
trace, or to the headers for a trace. For very sparse data sets, missing trace locations
may all point to a shared zero trace for economy of memory. The arrays have the
dimensionality and axis parameters of the SEPIib90 data set which it will contain.
Along with the grid arrays, a data set must have the axis parameters, number and
format of header keys, certain logical flags for book keeping, etc. Seven types are
defined, for one- to seven-dimensional data sets, which should easily accommodate
most needs for seismic processing (since a 3D pre-stack data set requires only five-
dimensional space).

The structure is most easily described graphically. This is done in Figure 1.
Figure 1 displays the shape and connectivity of a two dimensional data set, such as a
common midpoint gather. The figure shows a data set with four traces, binned onto
a grid with six grid cells. The two empty cells share the zero trace, zero_tr, and zero
header, zero_hdr. In the example there are three header keys, described by the three
elements of the array keys, each of which consists of a name, type, and format (the
identifying traits in a SEP1ib90 header format file), and an index referring to location
inside each sep_hdr array. It is not shown, but each sep_hdr can consist of real and
integer components. Also not shown are various logical flags.

sep_2d
traces headers
W’\va M%w \
zero_tr sep_tr sep_tr sep_tr sep_tr zero_hdr sep_hdr sep_hdr sep_hdr sep_hdr

i 8 B d§ B

n m

0 M

d

label o
time’
"offset”

keys

—= header keyl: name, type, format, location (index)
—= header key2: name, type, format, location (index)
—= header key3: name, type, format, location (index)

Figure 1: Diagrammatic representation of Fortran90 data structure for SEP1ib90.
bobl-struc2| [NR]

Below is the complete sep_2d structure:

364 Clapp & Crawley SEP-92

if headers allocated
if traces allocated

if keys are allcoated
if keys info written

logical :: alloc_hdr

logical :: alloc_tr

logical :: alloc_keys

logical :: rite_keys
end type sep_2d

type sep_2d

type (sep_hdr), dimension(:), pointer :: hdrs ! 1-D header array
type (sep_tr), dimension(:), pointer :: traces ! 1-D trace array
type (sep_tr) 11 zero_tr ! zero trace
type (sep_hdr) :: zero_hdr ! zero header
integer, dimension(2) i n ! npumber of elements
real, dimension(2) HERN) ! first element location
real, dimension(2) :: d ! sampling
character(len=128), dimension(2):: label ! axis description
integer :: n_keys ! number of keys
integer :: num_int ! number of integer keys
type (sep_key_info), dimension(:), pointer :: keys ! description of keys
character (len=128) :: type ! type of data

!

!

!

!

type sep_tr
real, pointer ,dimension(:) :: rdata ! real data storage
complex, pointer ,dimension(:) :: cdata ! complex data storage
integer, pointer,dimension(:) :: idata ! integer data storage
logical :: exists ! if trace is allocated

end type sep_tr

type sep_hdr

logical 1: exists ! if headers allcoated
real, pointer, dimension(:) :: rhdr ! real header storage
integer, pointer, dimension(:) :: ihdr ! integer header storage

end type sep_hdr

type sep_key_info

integer :: location ! location rhdr/ihdr array
character(len=128) :: name ! key name
character(len=128) 11 type ! key type

end type sep_key_info

CONSTRUCTORS

The complexity of our structure, and our desire to maintain as much flexibility and
simplicity in function calls possible, forced the construction of our sep-data types to
be broken into multiple steps.

set_data_pars

The only routine that must be called is set_data_pars. The overlying grid and the
type of data that will be contained within the grid is described by set_data_ pars.

SEP-92 Fortran90 365

The grid is 'described’ in traditional SEP format through the n, o, d, and label
parameters. The grid can mean different things. In a traditional SEP77 data-set,
with uniform spacing the meaning is quite clear. In Sep90 data-sets with a grid format
file, our sep_type grid is analogous in shape and purpose to the grid described by the
grid format file. With SEPIib90 files without a grid, and more generally any irregular
datasets the grid describes any computational regularity that might be present in the
dataset.

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description

sepdata | sep_type The name of the dataset.

type character(len="%) Type of data contained in the
structure.

n integer (array of data dimensionality> 1 | The extents of the data.

0 real (array of data dimensionality> 1 The origin of the data.

d real (array of data dimensionality> 1 The sampling interval of the
data.

label character (len=%*) (array of data The axis labels for the data.

dimensionality> 1

set_header_pars

SEPIib90 incorporated the concept of headers through the header format file and
header value files. The keys are described by key name, type, format, and index in
the header formal file. set_header_pars serves the same purpose as the header format
file. It sets in the key structure the key names, types, and format and constructs a
useful reference array that speeds up accessing of integer and real header values.

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description ‘
sepdata | sep_type The name of the dataset.
n_keys | integer The number of header keys.
name character(len=*) array(n _keys) | Array with key names.
format | character(len="*) array(n_keys) | Array with key formats.
type character(len=*) array(n_keys) | Array with key types.

init_traces

init_traces allocates n-1 (where n is the dimensionality of the sep_type) trace array
and sets the rdata, cdata, or idata to the corresponding member of the zero_tr (see
Figure 2). This is one of the most powerful features of our formulation, the regularity
of a grid, and the corresponding simplicity of accessing, is preserved, while:

366 Clapp & Crawley SEP-92

e not allocating exorbitant memory and
e still allowing easy determination of holes in the grid.

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description ‘

‘ sepdata ‘ sep_type ‘ The name of the dataset. ‘

init_header

Serves the same function as init_header. The header array is allocated and the rhdr
and/or idhr portion of the hdrs are set to the corresponding zero hdr value.

Zern

Trace
02+ i + (N2 -1]

03 + i3 +
inig =11

Figure 2: Diagrammatic representation of init_traces function, in this case a sep_3d
structure. A 2-D array of the sep_tr function is allocated along with the zero trace.
Each member of sep_trace is then set to the zero trace (gray circles correspond to
grid cells where the trace is associated with the zero_tr). |[bobl-init| [NR]

FUNCTION DESCRIPTION

Name Format | Description
sepdata | sep_type | The name of the dataset.

allocate_traces

After calling init_traces all of the members of the trace structure are set to the
zero trace. The allocate_traces routine allows allocating of portions, or the entire
trace array structure (see Figure 3).

SEP-92 Fortran90 367

../bobl/./Figs/allocate.ps

Figure 3: Diagrammatic representation of allocate trace. Grey circles represent
grid cells where the trace is still associated with the zero_tr.

The subroutine defaults to allocating the entire trace structure, but portions of
the traces array can be allocated through several ways using optional parameters:

e use of standard SEP window arguments,

e or by passing a tr_num integer array, signaling holes with -1 values, the same
way they are described in grid values file.

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description

sepdata | sep_type The name of the dataset.

fwind integer array Optional, first location along given access to
start allocating traces.

jwind integer array Optional, skip factor when allocating traces.

nwind | integer array Optional, number of traces to allocate along
each axis.

tronum | integer array (dim=1) | Optional, array which indicates whether or not
to allocate a given trace.

allocate_hdrs

Same functionality and arguments as allocate_traces.

368 Clapp & Crawley SEP-92

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description

sepdata | sep_type The name of the dataset.

fwind integer array Optional, first location along given access to
start allocating headers.

jwind integer array Optional, skip factor when allocating headers.

nwind | integer array Optional, number of headers to allocate along
each axis.

tronum | integer array (dim=1) | Optional, array which indicates whether or not
to allocate a given headers.

DESTRUCTORS

For memory reasons, and to allow easy reuse of structures, a destroyer is also neces-
sary. We built two destroyers, one for the headers and one for the traces.

cleanup_traces

cleanup_traces deallocates all allocated rdata, idata, cdata portions of the traces
array. And then deallocates the traces array. After this call it is possible to reuse
the same structure with same dimensionality or a different dimensionality.

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description ‘

‘ sepdata ‘ sep_type ‘ The name of the dataset. ‘

cleanup_hdrs

Same functionality as cleanup_traces. All allocated headers are deallocated along
with header array.

FUNCTION DESCRIPTION

‘ Name ‘ Format ‘ Description ‘

‘ sepdata ‘ sep_type ‘ The name of the dataset. ‘

ACCESSORS

Data

In building the accessor routines we were confronted with the opposing objectives
of ease of use and efficiency. On the one hand you would ideally like to access

SEP-92 Fortran90 369

data, regardless of type, in a simple uniform manner. Such an approach would,
however, require an “if” statement being evaluated with each access, something that
is computationally wasteful, especially inside loops. Our decision was to offer the
programmer either alternative. When speed is not an issue, a simple data call can be
used to access the data. In most cases, the user will have for-knowledge of his data
type, in which case we provide the simple routines: rdata, for real data; cdata, for
complex data; and idata, for integer data.

e Description:

Making data access simple and straight forward was one of our primary concerns
in designing our Fortran90 environment.

e Specifications:

FUNCTION DESCRIPTION
| Name | Type | Description

sepdata | sep_type | The name of dataset.
index1 integer | location within sep_tr¥%hdrs structure.
index2..7 | integer | location with in sep_tr array.

370

Clapp & Crawley SEP-92

e Examples:

In order to make the transition for users simple, we built accessors to mirror
array accessing in Fortran 77. In Fortran 77 you would access a 2-D array
through:

array(i1,i2)
Using our Fortran90 library the general form of the call would be:
data(array,il,i2)

Where array is a sep-2d type, and il and i2 are integers.

Header

e Description

The introduction of multi-format headers to SEPIib is one of the key components
of SEP90. It is also one of the most difficult parts of the SEP90 data structure
to effectively incorporate into Fortran77. With our Fortran90 library, multiple
data formats do not cause a problem. Our structure independently holds the
two data formats currently supported by SEP90, integer and reals, and uses the
key type structure to navigate the rhdr and ihdr routines.

Specifications
FUNCTION DESCRIPTION
| Name | Type | Description

sepdata sep_type The name of dataset.

key_num | integer Key index or

key_name | character (len=*) | The key name.

index2..7 | integer Location with in sep_hdr array.
Examples:

To the user, accessing header routines is straight-forward. The user can either
access header information through the key index or by the key name. To access
the header in a 4-D data set the call would be simply.

header (sepdata,key_num,i2,i3,i4)
or

header(sepdata,'"sx",i2,1i3,i4)

DATA 1/0

One of the most attractive features of SEP77 was its straight forward I/O capabilities
through sreed and srite. With the advent of SEP90 and irregular data capabilities

SEP-92 Fortran90 371

I/O suddenly became much more complex. Figure 4 shows an example of what needs
to be done to read in a CMP gather from a SEP90 dataset. Even by following
this procedure you will have lost the overall grid structure and are storing both real
and integer header values in a common array, a far from ideal situation. With our
structure the procedure is much simpler and powerful. Our sep_reed and sep_rite
can be used to read in any type and portion of SEP dataset (data and/or header
and/or grid). In addition the data can be read into any portion of one of SEP data-
sets. We take full advantage of Fortran90’s optionals to make the reading as simple
or as complex as necessary.

To read in a trace from a SEP77 dataset into sep_1d type, the call remains as
straight forward as the traditional sreed:

sep_reed("in",datald,"real")

With the additional benefits that the o,d, n, and label are also retained in the sep
structure.

To read in the 2-D CMP gather shown earlier becomes just a slightly more complex
exercise:

sep_reed("in",data2d, "real",fout=/posl.pos2/)

A significant improvement over the C or Fortran 77 approach. In addition the
overlying grid is preserved and the data and the headers can be accessed using a call
very similar to the way uniform arrays are reference in Fortran 77.

sep_reed parameters

e Required Parameter

FUNCTION DESCRIPTION

‘ Parameter ‘ Type ‘ Description ‘
tag character(len=*) | The tag of history file.
data sep_type Location to read in the data (real,

complex,integer).
type character(len=%*) | The type of data to read in.

372 Clapp & Crawley

READ [N

PARAMETER - FILF

nt, of, d1 —histary
nz_grid,02_grid,d2_grid —gff
n3_grid,o3_grid,d3_grid —gff
nd_grid,o5_grid,d5_grid —gff

n_keys —hff
samé_record_number-history

it same_record_number==0 ye&s

SEP-92

READ M

- data_record _number key

no .
yes if |exists
ot
F
ALLOCATE e
integer grid{n2_grid)
real hffin_keys,n2_grid) seperr

real data(n1,nZ_grid)

Y

READ IM SLICE
of header record number

loop through n2_gricle—

if gridti2) 1= —1 e

BEE

READ M

header record number
if same_record_number ==|1 no »| CONVERT
yes header{data_record_number)
to integer

v

READ M

trace

Figure 4: Flow chart of the procedure to read in a CMP gather. |bobl-flow2| [NR]

SEP-92

e Optional parameters

Fortran90 373

FUNCTION DESCRIPTION

| Parameter | Type

| Default - Description

usegrid logical True if grid exists, whether or not to use the grid
creating the data-set.
nin integer array Defaults to the values read in from the tag
unless f and/or j defined.
fin integer array Portion of the dataset to begin reading in,
defaults to 0.
jin integer array Sub-sampling of the dataset to begin reading,
defaults to 1.
nout integer (array if | Size of data, defaults to amount of data read in.
data dim > 1)
fout integer (array if | Size of data, defaults to 0.
data dim > 1)
jout integer (array if | Size of data, defaults to 1.
data dim > 1)

e Examples

To read in every other trace in the third slice from a 3-D real dataset the call

would be:

sep_reed(tag,data2d,fin=/0,0,2/, jin=/1,2,1/)

To read in the first 50 traces of complex SEP90 dataset, ignoring the grid,
padding to 1024 would be accomplished with:

sep_reed(tag,data2d,nin=/800,50/,"complex" ,usegrid=.false.,
nout=/1024,50/)

sep_rite

The structure of sep_rite is similar to that of sep_reed.

e Required Parameters

FUNCTION DESCRIPTION

| Parameter | Type

| Description |

tag

character(len=%*) | The ttag of history file.

data

sep_type

The location to read in the data.

374

Clapp & Crawley

e Optional parameters

FUNCT]

SEP-92

[TON DESCRIPTION

Default - Description

Parameter ‘ Type

nin integer (array if | size of data to write out defaults to the entier
data dim > 1) | data-set unless fin and/or jin are specified.
fin integer (array if | First index of data to write out, defaults to 0.
data dim > 1)
jin integer (array if | skip factor of data to write out, defaults to 1.
data dim > 1)
nout integer array Defaults according to fin,jin, and nin.
fout integer array Where to begin writing out.
jout integer array Skip factor when writing out.
writedata | logical Whether or not to write trace info (defaults
according to whether traces have been allocated).
writehead | logical Whether or not to write trace info (defaults
according to whether headers have been allocated).
writegrid | logical Whether or not to write grid, default to true
unless pad = true.
pad logical Whether or not to write out zero traces and/or
headers. Defaults to .false.

e Examples

An irregular dataset can be written out into a regular SEP77 type file, replacing
holes with zeros by

sep_rite(tag,data2d,pad=.true.,writehead=.false.)

A 2-D slice from a sep_3d structure can be written out with:

sep-_rite(tag,data2d,fin=/0,0,3/)

OPERATORS

There were several directions that we felt we could follow with the design of opera-
tors. The first approach is what SEP traditionally did within Fortran77. Specifically
to define all of operators through subroutine calls. This approach is advantageous
because specifying whether to run the adjoint or the forward operator would involve
changing one parameter in the subroutine call:

operator (input,output,adjoint)

On the other hand addition

is another valid operator and it not expressed through subroutines. We decided
that it was more important to keep the operator concept consistent with its mathe-
matical counterpart as much as possible.

SEP-92 Fortran90 375

This approach allows compound statements like:
D =A.conv.B - C

where A, B, C, and D are all sep_type’s.

Basic mathematical operators

So far we have used Fortran90s operator overload capacity to include the ability to
add, subtract, multiply, and divide sep_type’s.

| Operator | Usage |
Addition |C=A+ B
Subtraction | C = A — B
Multiply | C =A% B
Dividle | C =A/B

Each operation checks that the dimensionality of the two spaces conform, add
performs the desired operation. The traces are looped over, if both input traces are
associated with zero trace, an output is not allocated at the given location, otherwise
the give operation is performed and the output is stored in the associated output
location.

Convolution
In addition to the four basic basic mathematical operators above, we have begun

adding several addition useful operators such as convolution. Figure 5 and the fol-
lowing code fragment shows how easily operators can be incorporated into Fortran90.

cata= aata.transconv.bata

call sep_rite("inputl",aata)
call sep_rite("input2",bata)
call sep_rite("output",cata)

In this case adata, bdata, and cdata are all sep_types.

SOLVERS

At this point we have only implemented one solver, SEP’s traditional workhorse, the
conjugate gradient solver(Claerbout, 1994).

376 Clapp € Crawley SEP-92

:}rmh

Figure 5: The two inputs and the output of a transient convolution. [CR]

Creating an effective interface for this subprogram presented a challenge because
model space and data space may each be of any dimensionality, such as a model which
is sep_1d and a residual which is a sep_2d; and both spaces are often made up of
several parts, which may themselves be of different dimensionality. A problem may
have, for instance, a data residual which is a vector and a model residual which is a
plane. This presents far too many possibilities to consider an overloaded solver. Such
a thing is at any rate needless, since the conjugate gradient algorithm needs only
to take dot products; the Fortran77 incarnation of the solver assumes that whatever
matrices it is given are vectors.

To handle diversely-dimensioned, compound spaces, we decided on a similar tactic.
Anything being passed to cg should be in the form of a 2D data set, a vector of
pointers to traces. This is accomplished by collapsing larger dimensionality data sets
via the function vectorize. Several distinct spaces (a model residual and a data
residual) may be vectorized and then joined together via the function merge. A
call to subroutine cg would then look like this:

call cg(iter, niter, merge(vectorize(model),vectorize(filter)), &
merge (vectorize (dmodel) ,vectorize(dfilter)), &

merge (vectorize (modelresidual) ,vectorize(dataresidual)), &

merge (vectorize (dmodelresidual) ,vectorize(ddataresidual)))

In fact, a linear inverse problem could be entirely contained within the call to the
solver, since procedures may be passed as arguments.

FUTURE

SEP is investing considerable effort in SEP1ib90 in order to be able to do effective
research into 3-D seismic problems. We think it is a good design and are committed
to it. One of the early discoveries made as SEP1ib90 was born was that “overhead”

SEP-92 Fortran90 377

coding had grown enormously. A great deal more programming, much of it predictable
from program to program, was required to deal with header axes, grid axes, and the
like. Fortran’s lack of user-defined structures and operators engendered this as well as
the need for declaring, passing, and keeping track of many new variables to deal with
headers and grids. SEP knew fairly early that some other language was necessary,
and we in particular chose Fortran90 for its familiarity, versatility, and its promised
power — we had just taken delivery of a 16 node SGI power challenge, a platform
where much attention has been paid to Fortran90 and its use as a parallel language.

The framework is in place now for use of Fortran90 at SEPIib90, though there
remain numerous kinks. For the future we plan further development; a full set of op-
erators, more routines for easily constructing the spaces needed by filters and residuals
as necessary for inverse problems, and whatever else our experiences tell us we need.

CONCLUSION

Fortran90 is a powerful, parallelizable, object oriented language that lends itself eas-
ily into to SEP’s vision for future 3-D processing, SEP1ib90. The foundation that
we have built takes advantage of the power of SEPIib90 in dealing with irregular
datasets greatly simplifying the reading, writing, and accessing of the data while still
intelligently managing memory. In addition our initial attempts at building operators
using this data structure have proved to be simple, straight forward, and effective.

REFERENCES

Biondi, B., Clapp, R., and Crawley, S., 1996, Seplib90: Seplib for 3-D prestack data:
SEP-92, 343-364.

Claerbout, J. F., 1994, Applications of Three-Dimensional Filtering: Stanford Explo-
ration Project.

Nichols, D., Urdaneta, H., Oh, H. 1., Claerbout, J., Laane, L., Karrenbach, M., and
Schwab, M., 1993, Programming geophysics in C++: SEP-79, 313-471.

Schwab, M., 1994, Birth of a C++ project: SEP-82, 251-256.

