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ABSTRACT

In this paper, I propose a new procedure for estimating the validity of 3-D velocity
models combining seismic data and well-log information. The method I describe
gives the best least-square 3-D model for the velocity. It has even more potential
for determining how accurate a velocity model is by estimating a range of possible
models and giving a measure of local uncertainty about the velocity. I propose to
use a 3-D prestack seismic survey as well as the well-log curves available on the
site of the survey to evaluate and update a 3-D velocity model. Performing 3-D
velocity analysis on the 3-D prestack seismic data, I will get an initial velocity
model. From the well-log information, I plan to extract velocities at the well
locations. I will then employ two different approaches to derive an accurate 3-D
velocity model. The first is based on the least-square inversion of the well-log-
derived velocities and uses the seismic velocities as a constraint, by applying for a
conjugate gradient method. The second approach is a simulation of the velocity
at each node of the 3-D model, using a sequential Gaussian simulation algorithm
based on a generalized least-square inverse technique (kriging). I also intend to
estimate local and global uncertainties about the velocity model I have derived.

INTRODUCTION

Nowadays, methods of three-dimensional seismic analysis are part of every oil com-
pany’s activity. The depth migration of 3-D seismic data has become mandatory,
and interpreters feel more comfortable working on depth-converted images because
of the complex geological structure of the subsurface of the oil fields under investi-
gation. Any 3-D depth migration algorithm requires a velocity model in order to
yield a depth image of the geology. The risk of drilling dry holes increases and the
decision to implant production wells becomes difficult when that decision is based on
the interpretation of images that have been depth-converted with an inaccurate, or
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imprecise, velocity model. An exact knowledge of the velocity is therefore required
prior to any attempt to convert seismic data in depth.

Because the geologic structures of oil reservoirs are usually relatively local features,
their mapping by seismic methods may become less reliable when rapid lateral velocity
variations occur in the area. For this study, I make the hypothesis that the Dix
assumption (1955) applies, but I know that this hypothesis is violated when I take
into consideration the lateral variability on velocity.

Previous work

Accurate estimation of the interval velocity and its lateral variations is one of the most
problematic steps in seismic data processing. In conventional seismic processing, the
interval velocity model is derived from the stacking velocities, which are determined
by measuring the coherency of the reflections along hyperbolic trajectories. Hubral
et al. (1980) have shown that this method is an approximation which is only valid
for horizontally stratified media and slight variations in lateral velocity.

A common approach to obtaining a velocity model varying horizontally and ver-
tically, V' (z, z), is reflection tomography, based on traveltime inversion. Many varia-
tions on reflection tomography have been tested in recent years. They usually differ
in the choice and parametrization of the data and the model space. Toldi (1985)
presented a method for inverting stacking velocities. Landa et al. (1988) proposed
to produce a velocity depth model that maximizes some measure of the coherency
computed along traveltime curves. Harlan (1989) compared estimated traveltime
with that of picked horizons but he does not allow for strong velocity gradients.
Van Trier (1990) and Etgen (1990) used residual migration to determine interval ve-
locities. Biondi (?) used beam stacking in conjunction with prestack migration in
iterative inversion schemes to estimate the velocity model. Reflection tomography is
an expensive process that is not currently used on 3-D data.

One of the most difficult problems facing the seismic processing industry is how
to incorporate additional sources of information such as well logs and geologic mod-
els into seismic imaging (Versteeg and Symes, 1994; Toldi, 1995). Several studies
have shown that a strict layering approach does not describe the velocity structure
adequately, but does provide a starting point (Hanson and Whitney, 1995).

PROPOSED APPROACH

I propose to use 3-D inversion of the seismic data to estimate a 3-D velocity model
that matches the given well-log information and follows the trend of the seismic data.
To do so, I plan to integrate a set of irregularly-spaced 1-D well-log velocity curves and
a 3-D seismic stacking velocity cube to produce a 3-D velocity model. This approach
combines the processing and geostatistical analysis of seismic and well-log data.
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First, I plan to analyze and preprocess the well-log data from a particular seismic
survey. Ideally, this step would require the following well-log curves: sonic log, gamma
ray log, and checkshot. The gamma ray curve is very useful for interpreting the
geology and defining where the major boundaries separating the geological macro-
layers are. If the sonic log is not available, it can be inferred from the gamma ray
curve at the same well location. The sonic curve, along with a checkshot, will allow
me to estimate the seismic (stacking) velocities at the well.

I will then process the 3-D seismic data in order to determine an initial 3-D
velocity model. This processing comprises noise filtering, sorting of the traces from
shot gathers into common depth-point gathers (CMP), and velocity analysis. I also
plan to apply normal moveout to the CMP gathers before stacking them and to
perform a depth migration in order to get an initial depth image of the geology.
This stacked and/or depth-migrated image will help me visualize boundaries of the
geological macro-layers and the presence of structural features such as faults, folds,
and diapirs. The macro-layers observed in the section will help me make visual
correlations with the processed well-log data.

Following this processing sequence for both data sets, I will define an inversion
scheme based on the seismic and the well-log data (the data space) in order to derive
a corresponding 3-D velocity model (the model space). The initial scheme I propose
is a least-square inversion method that minimizes the function

®(m) = E(m) + ¢ L(m) (1)

where E (m) measures the prediction error between the estimated 3-D velocity model
m and the well-log-derived velocity that is linearly interpolated on a regular grid. The
presence of L (m), which measures the length of the model, ensures that the trend of
the estimated model does not move far away from the trend of the seismic velocity:

E(m) = (dy — Lm)T Ct(d, — Lm)

(2)
L(m) = [A(m — mo)" [A(m — mo)]

where d,, is the velocity data derived from the well, L is the linear interpolation oper-
ator, and C;' is the inverse covariance matrix of the well velocity. A is a roughening
operator, and my is the initial model, which is the seismic velocity data mapped onto
the model space by linear interpolation (my = Ld,).

The factor € determines the relative importance given to the prediction error and
the model length, which is also the relative importance given to the well data over
the seismic data in this scheme. I will use a prediction error filter (PEF) determined
from the seismic data for the roughening operator A. The role of this PEF is to
ensure that the global trend of the estimated model follows roughly that of the initial
seismic velocity.
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Another approach to this problem is that provided by geostatistics. Ultimately, I
want to derive a measure of the global and local uncertainties about the estimated 3-D
velocity model using sequential Gaussian simulation algorithm. The same algorithm
can be applied to obtain an estimated 3-D velocity model by means of the well-
log-derived velocity and the initial seismic velocity model. First I will calculate the
histogram of the cumulative distribution function (cdf) of the well velocity V,, and the
initial seismic velocity Vs. I will apply a normal score transform ¢ to transform these
velocity values V,, and Vs into €2, and (), following a standard normal distribution
N(0,1) (Deutsch and Journel, 1992). Then I will perform a sequential Gaussian
simulation on the 2 values, as follows:

1. I will define a random path that visits all the grid locations once. At each
location 7, I will define a neighborhood around the location #; to retain only a
portion of the data points.

2. At the location zj, I will infer a covariance model from the spatial variability of
the data.

3. I will then estimate wi (Z;), the best least-square estimated value of Q at the
location 7, and 0% (x;), the variance of the conditional cumulative distribution
function (ccdf) of the random function €. This estimation is realized by a krig-
ing with a trend (KT) algorithm, which requires the covariance model infered
at step 2. I plan to perform KT on the well velocities using the trend of the
seismic velocities to constrain the estimation.

4. T will go to the next location and repeat steps 1 to 3 until all the w(z;) are
simulated.

Finally, I plan to back transform all the simulated normal values w into simulated
values for the velocity V.

Performing this conditional simulation will allow me to determine a measure of
local and global uncertainties about the estimated velocity model. To obtain L equally
probable simulated images of the velocity model, I will use the best least-square
estimated value w¥(#;) in step 3 as the mean of the ccdf at location 7;, draw L
simulated values w® (%) | = 1,L based on the ccdf N (wi(z;), 0% (%)), and back
transform them into the velocity space. At each location 7, the L simulated values
provide a histogram of possible outcomes for that particular location, which is a model
of local uncertainty about the velocity. In addition, for each of the L simulated images,
I can average the simulated velocities over the entire space and organize the result in a
histogram that provides a measure of global uncertainty about the average estimated
velocity.
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WORK COMPLETED

This section presents two data sets I worked on. I investigated the inversion technique
using the conjuguate gradient method on a data set provided by Chevron Research
Laboratory. The second data set, given by Pathfinder Oil and Gas, contained several
well-log curves on which I did some preliminary preprocessing.

Chevron dataset

At the beginning of 1995, John Toldi from Chevron Research Laboratory in La Habra
provided SEP with a sample of data extracted from a data set. The sample data
comprise a series of isovelocity (average velocity) surfaces and a set of well data
points. The surfaces are isovelocity maps extracted from a 3-D root mean-squared
(RMS) velocity cube and converted into average velocity maps. These maps give the
depth to a particular velocity (e.g., 2000 m/s) at different locations. The well data
points give the depth at the well location where the same isovelocity surface has been
observed. These well velocity values were calculated from checkshots. Both kinds
of data were available as GOCAD surfaces. GOCAD (Mallet, 1994) is a software
package that offers numerous tools for building, viewing, and manipulating geologic
models described as surfaces. Figure 1 represents a plane view of the 2000 m /s seismic
isovelocity map. The black squares correspond to the location of the well data values
for the same isovelocity surfaces.

The ultimate goal of this study is the depth conversion of the original seismic
data. The well-derived velocities represent an accurate, but poorly sampled, data
set. The seismic velocity is much denser, but less accurate. The velocity at the well
is a measurement (high resolution, one sample per foot) while the seismic velocity is
derived by calculations relying on the seismic two-way traveltime. Also, the conven-
tional processing of the seismic data does not account for anisotropy. The stacking
slowness (inverse of the velocity) depends on the traveltime, which depends on the
physical interval slowness. Therefore, any uncertainty regarding the interval slowness
or traveltime will have an effect on the stacking slowness estimation. The seismic
stacking velocity also has a bias as a depth predicter; that is, there is a systematic
mistie between the seismic and the well data sets. My goal is to cancel or at least
significantly reduce this mistie.

Prior to receiving this data set, I studied an identical problem with a synthetic
data example (Berlioux, 1995). The approach I took was to address this problem
with a least-squares inversion scheme defined with the following set of equations:

(3)

0 ~ Lm — d,
0 ~ eA(m — my)

The first equation of (3) performs a mapping of the well data d,, by linear interpola-
tion, L being the linear interpolation operator, onto the model space m. The second
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Figure 1: GOCAD model for the Chevron data set. The triangulated surface repre-
sents the seismic-derived 2000 m/s isovelocity surface. The black small cubes show
the location of the well data values. ‘arnaud—chevron—gocad‘ [NR]

equation of (3) describes the minimization of the error between the model and the
linearly interpolated seismic data as an initial version of the model. The scaling factor
€ sets the relative importance of the well data over the seismic data. I use a PEF
determined from the seismic data for the roughening operator A.

I solved the system of equations (3) by a conjugate gradient (CG) method. The
CG approach produced good results for a synthetic example made of one isovelocity
surface and four well data values. However, the same set of equations and the CG
method did not produce conclusive results when applied to the Chevron data set.
Figure 2 shows the 2000 m/s isovelocity surface after 1000 iterations of CG with a
5x5 PEF. High spikes are clearly visible around the well locations, and the depth to
the surface is modified at the edge of the top right and lower left corner zones where
no seismic data is available. I reduced the data set by extracting a portion of the
same isovelocity map. These new data do not have the same disadvantages of the
previews map, i.e., there is no jump at the edges to a zero value. Figure 3 shows
the result of 1000 iterations of CG with a 5x5 PEF using the reduced data set. The
resulting map is very smooth and follows the trend of the original seismic data. The
misties at the well have been significantly reduced in general and cancelled for more
than half the wells.
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Figure 2: 2000 m/s isovelocity surface modeled by 1000 iterations of conjugate
gradient with a 5x5 prediction error filter. The surface is viewed upside-down
within AVS showing high spikes at the well locations (vertical exaggeration 100:1).
arnaud-chevron-pef ‘ [NR]
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Figure 3: Portion of the 2000 m/s isovelocity surface modeled by 1000 iterations of
conjugate gradient with a 5x5 prediction error filter. The misties at the well have
been dramatically reduced, and the surface follows the trend of the original seismic
data. |arnaud-crop-pef ‘ [NR]
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Pathfinder dataset

In October 1995, Pathfinder Oil and Gas, Inc., made available to me a portion of a
3-D land data set. The original prestack data set was recorded on an irregular, 17.5
square-mile grid. The sampling rate in time is 2 milliseconds over a 3 second total
time recorded. There are 65 wells drilled on the site of the survey. The available data
set comprises a poststack time-migrated 3-D seismic cube (3.6 squared miles) and six
sets of well-log curves recorded at six different locations on the survey site. Figure
4 shows the interval velocity map for a particular horizon of the survey and the six
well locations. The two southern wells (E and F) are dry holes.
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Figure 4: Interval velocity map for one of the main reflectors on the site of the survey.
In the four wells at the center of the figure, oil has been observed, and two of them
are producing oil. The wells E and F at the bottom of the figure are dry holes.
|arnaud-horizon | [NR]

As of the date of this article, I have not received the corresponding 3-D prestack
shot gathers and the stacking velocity model used to migrate the seismic data. I
will also obtain four more well logs. The well-log curves available are two sonic logs,
six gamma ray logs, as well as other curves (induction, self-potential, porosity, and
density). No checkshots have been recorded in any of these wells.
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The geology for the area is not structurally complex: at the depth of the target
zone, the geology shows prograding carbonates and clastic sediments embedded in thin
sand layers in a shaly environment. The prograding of the carbonated series makes it
difficult to predict the extent of the oil reservoir reached by the four northern wells.
Several dry holes have been drilled already in this area because of the inaccuracy of
the velocity model used for the time-to-depth conversion.

For this data set I worked with the six well-log curves available. I blocked by
hand all the gamma ray curves in order to do visual correlations between the various
wells. I defined nine major interfaces on one curve and retrieved them on the five
other curves. These interfaces bound regions of the curve where the gamma ray
values are roughly constant (high-frequency oscillations around a mean value). I
also blocked by hand the two sonic curves and retrieved the same nine interfaces as
determined on the gamma ray. Figure 5 shows a portion of the sonic and gamma ray
curves around the target zone. The high-frequency component of the original logs
has been removed by median filtering on a running window. The four curves present
strong similarities exploitable for interpretation and visual correlations. I then plotted
several scattergrams showing the existence of a correlation between the sonic and the
gamma ray curves at the two wells where both pieces of information were available. I
also observed a strong correlation (pjnear > 0.94) between the blocked sonic and the
gamma ray logs. Figure 6 shows this correlation on two scattergrams of sonic median
filtered values plotted against gamma ray median filtered values for the nine layers
defined around the target zone.

WORK TO BE DONE

In this section I describe in greater detail what still remains to be done in each step
of the processing sequence.

Seismic data processing

One must carefully process seismic data in order to extract the stacking velocity
information. Typically, the processing involves

e noise filtering, including static removal (land data), multiple suppression (ma-
rine data), and muting

e sorting of the shot gathers into CMP gathers, which can be tedious in the case
of irregular 3-D geometry of acquisition

e velocity analysis, which yields a stacking velocity model

e NMO, stacking, time migration, and/or depth migration
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Figure 5: Sonic and gamma ray curves for wells E and F. The high-frequency
component has been filtered out by median filtering on a running window.
arnaud—dt—gr.88—93‘ [NR]
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Figure 6: Scattergrams of sonic versus gamma ray values for nine layers around the
target zone. arnaud—sub—dt—gr‘ [NR]
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I plan to perform the processing of the seismic data with PROMAX, as well as
with SEP in-house programs.

Well-log data processing

The processing of the well-log data requires several steps that need to be automated.
First, I will block the well-log curves to keep the low-frequency variations, thereby
allowing definition of interfaces between the different facies. This step is the most
important for this data type since it conditions the results obtained after further
processing of the logs. The sonic logs and the gamma ray logs will be blocked as well.
Other curves, such as the density log, may also require blocking.

Once the blocking has been performed, I will derive an interval velocity V()
within each block using either

e the direct summation from ray theory, as follows:

. AZ;
Viali) = S AT, = Yot @)
¢ J

where AZ; is the thickness of the block 7 and AT; is the sum of all the sonic
values d; within the block ¢, or

e the Backus average from effective medium theory:

1 1 dz M;
= V;n ) = : i)
Mz‘ AZZ p’l)2 t(Z) Pi ( )

where p is given by the density log, v is given by the sonic log (v = 1/6t), and
p; is the average density, indicated by the blocked density log.

The choice of method depends on the ratio of the seismic data wavelength to the
thickness of the block. Ray theory is used when this ratio is less than 10. When it is
greater than 10, effective medium theory applies.

Using the Dix equation (1955) I can convert the interval velocity into RMS velocity,
which is assumed to be the same as the stacking velocity.

Least-squares inversion

Although I have already written a Fortran77 program to solve a system of equations
similar to (3) by the conjugate gradient method, Figure 2 shows that this program
needs improvement in order to perform the inversion automatically without running
into problems of edge effects.



SEP-92 Seismic & well-log data 133

The general procedure for estimating the velocity model will be to iterate until
an acceptable velocity model is calculated, as follows:

e The mapping of the seismic velocity data onto the model space gives an initial
guess of the model.

e The standard damped least-squares inversion is applied. At iteration k&, I
— first invert for the model perturbation

bmy = [@ATA]T LTCLM dy — Limy) (6)

— then update the velocity model
M1 = Mg + Omy (7)

The convergence is achieved when the mistie between the well velocity and the
calculated velocities has been eliminated.

Sequential Gaussian simulation

I plan to use GSLIB (Deutsch and Journel, 1992) to perform both the kriging of
the well velocity with the seismic velocity as a trend and the sequential Gaussian
simulation (sGs) to calculate a measure of the local and global uncertainties about
the estimated model.

The kriging estimated value of the velocity based on the well data and using the
seismic velocity model as a linear trend is

V*(f) = Zl)\av(fa) (8)

where coefficients \, are estimated by solving the kriging with a trend (KT) system
(9), and V (Z,) are the velocities of the N neighboring points located at position Z,
used to determine V*(z). The KT system is made of (/V + 3) equations:

E]ﬁ;ﬂ /\ﬂ
Ezﬁvzl AgTpg
251 \sYp =

Yh MC(Ta —T) + ag + azq + a2y = C(@a—7F) a=1N
1
T
)

where C(Z, — Zg) is the covariance of the velocity at location Z, and location Z, and
a; are the coefficients of the linear trend:
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m(Zy) = ap + G1ZTa + 2Ya (10)

A covariance model is therefore needed and will be inferred from the semi-variogram
v(h) model of the well velocity. By definition, y(h) is equal to C(0) — C(h). The
sGs will also allow me to estimate a range of equiprobable velocity models that will
require some interpretation in order to produce a measure of the uncertainty about
the estimated velocity model.

The sGs procedure is based on the normal score transform of the velocity random
variable V(Z), assuming that the transformed variable is multi-normal. When the
multi-normality hypothesis cannot be retained, I will use an indicator simulation
instead of the Gaussian approach.

Visualization of the 3-D velocity model

I will use the GOCAD and AVS (Advanced Visual System) software packages to
visualize the 3-D velocity models at each stage of this project. The combination of
both software packages has proven particularly efficient in rendering 3-D models easily
and accurately, which is essential to understanding 3-D velocity structures (Biondi
and van Trier, 1993; Clapp et al., 1994).
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