Chapter 1

Seismic monitoring theory

1.1 Overview

In this chapter, I develop the mathematical relationships between fluid flow, rock
physics and reflection seismology. The theory discussed here shows how to perform
a complete run of the forward problem: simulate fluid flow, transform the fluid-
flow results and a geologic description to saturated rock properties, and predict the
resulting seismic reflection data. Similarly, I discuss the theory needed to perform the
inverse problem: given seismic reflection data as input, make estimates of the short
wavelength elastic impedance structure and long wavelength velocity structure, and
infer fluid-flow properties in the subsurface from time-lapse seismic data sets. !

1.2 Introduction

Fluid flow plays many important roles in the Earth’s crust, including: a resource of
potable groundwater, a lubricant along earthquake fault surfaces, an exchange sys-
tem with atmospheric fluids, and an association with natural energy resources such
as geotherms, mineral deposits, and hydrocarbon reserves. To learn more about the
role of fluids in crustal processes, remote sensing of fluid distribution and movement
with time-lapse seismic monitoring data may prove to be an extremely useful tech-
nique. However, a good understanding of seismic time-lapse monitoring requires an
integrated view of three traditionally separate disciplines: fluid flow, rock physics,
and reflection seismology.

In this chapter, I link the physics of fluid-flow, rock mechanics, and seismic wave
propagation, in the context of monitoring multi-phase flow in hydrocarbon reservoirs
(?; 7). Figure 1.1 schematically shows how these three disciplines are coupled in
the seismic fluid-flow monitoring problem, and how the critical physical parameters
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in each discipline are related. The equations of fluid-flow describe changes in pore
pressure p, temperature T', and multi-phase pore-fluid saturations S; due to fluid flow
in porous media. Rock physics transformations relate these fluid-flow parameters to
seismic compressional-wave and shear-wave propagation velocities a and 3. Elastic
wave theory demonstrates that scattered wave amplitudes A and traveltimes 7 of
reflected seismic waves u'~ contain information about the fluid-flow parameters, and
more importantly, that time-varying effects of fluid-flow may be decoupled from static
background geology and imaged directly with time-lapse seismic data sets.

The first section deals with the theory of multi-phase fluid flow. Darcy’s Law
of fluid flow for simple porous media is coupled with a statement of fluid-flow mass
balance. This leads leads to equations describing multi-phase flow in 3-D porous,
permeable media. The next section deals with rock physics theory. The relationships
between the bulk modulus K and shear modulus p are given with respect to seismic
compressional (P) and shear (S) velocities for dry porous rocks. Dry rock proper-
ties can be measured in the lab on core samples at varying confining pressure and
temperature. Saturated rock properties are then given by Gassmann’s equations as a
function of the dry rock properties, pressure, temperature and fluid saturation. The
last section describes how seismic wave propagation is related to fluid-flow and rock
properties. This includes the equations to simulate seismic reflection data given an
input earth model of saturated rock properties, and equations to image and estimate
subsurface rock and fluid properties given an input seismic reflection data set.
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Figure 1.1: A schematic diagram showing the critical physical parameters in each
discipline of fluid flow, rock physics, and seismic wave theory, and how they are
naturally coupled together in the seismic fluid-flow monitoring problem. Fluid-flow
parameters are permeability &, porosity ¢, viscosity 5, pressure p, temperature 7', and
saturations S;. Rock physics parameters are bulk and shear moduli K and 1y densrty
p, compressional and shear velocities o and . Seismic parameters are traveltime 7,

amplitude A, compressional and shear reflectivities R, and R;. M | theory-forward | [NR]



1.3 Fluid-flow theory

I consider a simple model of a hydrocarbon reservoir under production as an isother-
mal (constant reservoir temperature), immiscible (no chemical fluid mixing) three-
phase fluid flow, as discussed for example by Dake (7). The three phases present
in the pore space of the reservoir rock are oil, gas and water. During production,
pore pressure decreases near oil producing wells, where fluids are withdrawn from
the reservoir. Pore pressure increases near injection wells if gas or water is forced
into the reservoir to maintain reservoir pressure during depletion, or to help drive oil
towards the producing wells. The pressure variations cause three-phase fluid flow in
the three spatial dimensions x of the reservoir as a function of production time ¢. This
idealized model leads to the equations of 3- multi-phase fluid flow by coupling the
conservation of fluid-flow momentum and mass. More complex equations arise if the
reservoir temperature is also variable, especially when extreme variations dynamically
alter the viscosity and composition of the oil, as in a steamflood. Such complexity
will not be addressed here.

1.3.1 Darcy’s Law

Darcy’s Law is an empirical relation which describes the observation that the rate of
fluid-flow ¢(z,1) across a surface of area A is proportional to the gradient of the fluid
pressure p(x,1),

q:—EA@ggp, (1.1)
n

for one-dimensional flow along the z-axis, as shown in Figure 1.2. A French civil
engineer named Darcy (?) made observations of water flowing through sand packs.
The flow rate was found to be directly proportional to the permeability x(z) of the
porous medium, and when generalized to other fluid types, inversely proportional to
the fluid viscosity n(z), for a fixed pore pressure gradient.

Hubbert (?) showed that Darcy’s Law is equivalent to the Navier-Stokes equation
for conservation of fluid momentum. Darcy’s Law is useful for geoscience applications
because it describes the fluid flow in a macroscopic block of porous rock, which is
representative of an upscaled average of the complex fluid flow at smaller scales (7).

1.3.2 Conservation of fluid-flow mass

The mass flux across the surface A per unit length is pg, where p(x) is the single-phase
fluid density. The change in flux along the z-axis from z to x + A is therefore 9.(pq).
This flux change has to be balanced by the change in the fluid saturation S per unit
length in the volume between x and = + A, which can be written as A¢d:(pS), and
any amount of fluid injected per unit length into the volume, pQA. ¢ is the rock



porosity, and ) is the injection fluid-flow rate per unit volume. These effects can be
combined into a one-dimensional fluid-flow mass conservation equation:

du(pq) + A¢Oi(pS) — pQA =0 . (1.2)

oy

Figure 1.2: Darcy’s Law is an empirical relation which describes the observation that
the rate of fluid-flow ¢(x,t) across a surface of area A is proportional to the gradient
of the fluid pressure p(z,t) for one-dimensional single-phase flow in porous media.

NR]

1.3.3 Multi-phase flow

Darcy’s Law for the flow rate ¢ can be substituted into the fluid-flow mass conserva-
tion equation (1.2), and extended to give a three-dimensional single-phase fluid-flow
equation:

v [p (%) Vp] — ¢9(pS) = pQ - (1.3)

This can further be extended to three separate fluid phases of oil, gas and water,
yielding three coupled equations for 3-D multi-phase immiscible fluid flow (?),

v (ﬁwo) — 60,5, = Q, (1.4)

o

\% (’;—wm) — 60,5, = Oy, (1.5)

v lpg (;—g) Vpg] — 60(pgSy) = psQy - (1.6)

g

The subscripts o, w, and g refer to oil, water and gas respectively. S; is the saturation
of the ¢th fluid component in the pore space on a scale from zero to unity, and Q);
is a fluid injection term which can represent fluid addition from an injection well
(positive), or fluid withdrawal from a producing well (negative). p; is the partial
pressure for each phase of oil, gas or water. Equations (1.4) and (1.5) assume that oil
and water are relatively incompressible fluids, whereas (1.6) captures the significant



expansion and compression effects of a gas under variable pressure conditions by
including the gradient terms of gas fluid density p,. These flow equations are coupled
with the statements that the total pore saturation is complete and conserved with
time:

Sw—I'So—I'Sg =1 (17)
@tSw —|— &gSO —|— ath — 0 . (18)

Equations (1.4)—(1.8) are nonlinearly coupled and describe simple three-phase fluid
flow in the hydrocarbon reservoir with production time. They are solved iteratively
on a variable 3-D reservoir mesh by finite-difference or finite-element methods for the
pressure and saturation spatial distributions at several time steps. An example of a
fluid-flow simulation mesh is shown in Figure 1.3 for a faulted and uplifted reservoir
in the Troll field, offshore Norway. The fluid-flow simulation of oil saturation after
113 days of depletion from a horizontal well is shown in Figure 1.4. This example
will be discussed in detail in Chapter 3.

The important parameters to simulate are the evolution of the pore pressure and
saturation changes in space and time. More complicated systems of equations are
required to model complex thermal effects from steam injection processes, miscible
floods in which the individual fluid phases are allowed to mix by chemical reaction, and
other complicated phenomena such as oil fractionation, emulsions, fluid interfingering
and gravity override.
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Figure 1.3: An expanded section of a reservoir fluid-flow simulation grid.
[NR]
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Figure 1.4: Simulated oil saturation distribution after 113 days of depletion from a

horizontal well. 100% oil saturation is white, 0% saturation is black. [theory-so3] [NR]

1.4 Rock physics transformations

Given the fluid-flow equations of the previous section, and some description of the
reservoir geology, we can use rock physics analysis to transform reservoir pressure,
temperature and fluid saturation data into seismic parameters. The most important
parameters are the particle displacement velocities of the elastic waves that can prop-
agate and scatter through the reservoir. These seismic wave velocities are denoted
a(x) and 3(x) for the compressional (P) and shear (S) waves respectively.

Typically, dry rock properties for the reservoir are measured in the lab from core
samples as a function of mineralogy, porosity, pressure and temperature. Then, ef-
fective fluid bulk moduli are computed for three-phase fluid mixtures of oil, gas and
water, including the effects of temperature and pressure. Finally, saturated rock prop-
erties are calculated using Gassmann’s equation by combining the dry-rock data and
the effective fluid moduli as a function of pressure, temperature, porosity, and fluid
saturation.

1.4.1 Dry rock properties

Rock cores obtained from boreholes in the reservoir are cleaned and oven-dried prior
to dry rock measurements. Dry rock porosity ¢ and density p measurements are
performed. Compressional and shear wave velocities are measured in the dry core
samples with an ultrasonic wave generator, oscilloscope, and computer controlled
measurement apparatus. Traveltimes for the P and S waves to propagate in the core



sample are measured at the 100 kHz to 1 MHz frequency range, and dry rock values
for a and 3 are computed. Figure 1.5 shows an example of compressional waveforms
measured across different core samples in a lab experiment, Lumley et al. (?). These
measurements may be repeated under varying lab conditions of confining pressure and
temperature to map out the response of a dry rock sample to reservoir pore pressure
and temperature. Figure 1.6 shows an example of P- and S-wave velocities measured
in dry Ottawa sandstone with varying pore pressure (?). Based on the dry «a, 8 and
p data, the dry bulk moduli Ky, and dry shear moduli p4,, of the core samples can
be obtained using the relation:

, 4
Kiry = pla® = 28%) 5 pary = pB° (1.9)
where p is the dry density.
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Figure 1.5: High-frequency compressional waveforms measured in various core sam-
ples under rock physics lab conditions. The lower two waveforms were measured in

dry and saturated Massillon sandstone cores. [NR]

Figure 1.6: Compressional and shear wave velocities in dry Ottawa sandstone versus

pore pressure at 51 MPa overburden pressure (after Han, 1986). [ER]

1.4.2 Saturated rock properties

Unfortunately, ultrasonic lab measurements of saturated rock properties are not repre-
sentative of field saturated rock properties in the surface-seismic frequency bandwidth



(10-200 Hz). This is due to dispersive wave effects caused by frequency-dependent
fluid oscillations in the core sample pore space at ultrasonic frequencies. However,
the velocity effect of saturation can be approximately estimated at surface seismic
frequencies using Gassmann’s quasi-static fluid substitution theory, e.g., Bourbié et
al. (7). Gassmann’s equation relates the elastic moduli of a dry rock to the elastic
moduli of the same rock containing fluid at low frequencies:

K iy — (1 + ) K fruia K ary | Ksoria + K fruid
(1 = @)K fivia + 0K sotia — Kp1uia Kary [ Ksotia

Kot = Ksotid (1.10)

and

Hsat = Hdry » (111)

where Ky, and pg,; are the bulk and shear moduli of the saturated rock. Gassmann’s
relations require knowledge of the shear and bulk moduli of the dry rock (g4, and
Kyy), the bulk modulus of the mineral material making up the rock (Kiq), the effec-
tive bulk modulus of the saturating pore fluid (K f144), and the porosity ¢. Equation
(1.10) is used to compute the low-frequency bulk modulus of saturated rock from high-
frequency dry rock measurements. Equation (1.11) assumes that the shear modulus
is independent of the amount of fluid saturation. Dry rock velocity measurements are
assumed to be independent of the measurement frequency, which has been confirmed
in the lab to first order.

For partially saturated rocks at sufficiently low frequencies, we can use an effective
modulus K4 for an effective pore fluid that is an isostress average of the moduli of
the liquid and gaseous phases:

1S (1-25)
Kia  Kiiguid Kyus

(1.12)

This requires knowledge of the bulk modulus of the liquid phase (Kjiquid), the bulk
modulus of the gas phase (K,.s), and the saturation values (5). In general, if the
pore fluid includes more than two phases, we can calculate the mixture’s effective
bulk modulus Ky,;4 based on the the number of fluid components N, the volumetric
concentrations ¢; of the :th component, and their bulk moduli K;:

L s (1.13)
Kpia = K; '

Combining equations (1.10) through (1.13), we can use the following formulas to
estimate seismic velocities in saturated rocks:

[(SQ é sa
oyt = \lw (1.14)

psat



and

ﬁsat - H Hsat 5 (115)
psat

where pg,; is the density of the saturated rock:

Psat = (1 - ¢)psolid + ¢pﬂuid ) (116)

psotia 18 the density of the solid phase, and pyjyiq 1s the density of the fluid mixture
obtained as an arithmetic mean of the volume-weighted fluid density components p;:

N
Pfluid = ) Cipi - (1.17)

=1

This process allows us to calculate fluid properties that depend on fluid-flow satu-
ration values. Figure 1.7 shows an example of dry rock measurements (labeled “gas”)
in Ottawa sandstone as a function of pore pressure, and the saturated velocities pre-
dicted by Gassmann’s theory for 100% water, and 100% oil, saturated pore space
(Jack Dvorkin, pers. comm.). The saturated properties will depend on pressure and
temperature through the dry rock measurements, and through the variation in bulk
modulus and density of reservoir gas. Pressure- and temperature-dependent gas prop-
erties may be calculated as discussed by Batzle and Wang (?). This total combined
rock physics analysis allows us to calculate seismic velocities in saturated reservoir
rock as a function of mineralogy, fluid type and saturation value, pore pressure and
temperature. Therefore, we can map P-wave and S-wave velocity and density as a
function of the reservoir grid directly from the fluid-flow simulation values of pressure,
temperature, and oil, gas and water saturation.

Figure 1.7: Compressional velocity in Ottawa sand as a function of pore pressure and

oil/water/gas saturation (Jack Dvorkin, SRB, pers. comm.). [ER]



10

1.5 Seismic wave theory

Given the fluid-flow pressure, temperature and saturation data, mapped to seismic
P-wave and S-wave velocity and density, the response of these fluid-flow changes can
be modeled and imaged in seismic data by considering basic elastic wave theory.

1.5.1 Elastic wave modeling

Consider the elastodynamic wave equation for a seismic particle displacement vector
wavefield u(x,w) and a second order tensor stress field o(x,w) due to a body force
vector excitation f(x,w):

Vo —pw’u="f, (1.18)

e.g., Aki and Richards (?). Assume further a linear elastic stress-strain relationship
in the material continuum such that

o =C:Vu, (1.19)

where C(x) is the fourth-order elastic stiffness tensor Cjjz, and the “:” symbol means
a second order inner contraction. A volume integral representation for the PP “P-

wave to P-wave” scattered wavefield u” can be expressed as:
a,u” = / £ " ay . (1.20)
1%

Equation (1.20) is the volume integral representation of the reflected PP wavefield
PP
u (

a,, due to the excitation of a body force reflection-diffraction scattering potential

X,,w; Xs) measured at a receiver X, along an arbitrary vector component direction

£ (x;x5,%,) at each subsurface point x, excited by the incident source wavefield
u’ (x,w; x5) generated by a seismic source located at x;.

The assumption of isotropic elastic WKBJ (ray-valid) Green’s tensors for P waves
leads to:

u (xwix) = AT (x;x) 1 (x;x) eTX) = AT e (1.21)
where A" and 7 are the ray-valid P-wave amplitude and traveltime from the “source”
location x to the “observation” point x, and are related by the eikonal and transport
equations respectively (?):

IVr|? = Vr-Vr = 1 (1.22)

o?

AVir +2Vr-VA=0. (1.23)
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The unit vector t° is the direction parallel to P-wave propagation, as shown in Fig-
ure 1.8, and is perpendicular to the wavefronts 7 = constant.

For a linear isotropic elastic solid, the stress-strain relationship is

P

o =[NV )I+2uvu"| = d ME )T+ 268 0" (1.24)
a
where A(x) and p(x) are the Lamé parameters such that

A=pa* and p=pp*, (1.25)

and I is the second-order identity matrix é;;. Lumley and Beydoun (?) have shown
that a representation of the P-wave reflection-diffraction scattering potential £ is:

P

1w P APaP
£ =~ [(aVA = AVa) + 2(aVy — pVa)-(EF)] . (1.26)

Equation (1.26) is a body force equivalent for scattering-surface reflectivity excitations,
and is dependent upon the material property contrasts (gradients): Va, VA and V.

After some algebraic manipulation, (1.20) can be represented as:

PP

au (x,)= / pw? cos a, A, A, e PP cos o, dV(x) . (1.27)
\%

To interpret (1.27), the density at a subsurface point x is denoted p(x), and the
geometric reflection coefficient at that point is PP(X) The amplitude terms A, and
A, represent the cumulative geometric spreading, transmission loss, Q-attenuation,
etc., from the source and receiver to the subsurface point x respectively. The factor
cos a, involves the vector component projection at the surface location x, of u”" onto
the arbitrary direction a.. The term 7, = 7, + 7, is the total traveltime from the
source at x; to the subsurface point x and back up to the receiver at x,. Finally,
the diffraction weight cos ¢, represents the angle between the anticipated geometric
specular reflection direction E:P and the non-geometric diffraction direction ff In the
case of specular reflection when E:P = tf, ¢, = 0 and so cos ¢, = 1. The generalized
reflection ray and angle geometries are shown in Figure 1.8.

A linearized version of the nonlinear PP reflection coefficient can be parameterized
in terms of impedances as:

Ny _ ~A A _ ~ A

PP(x,cosf) ~ 0.5sec’ § Alpa) 4~% sin* 0 AlpB) + (272 sin®f — 0.5tan” 0) =P ,
(pe) (rB) p
(1.28)

where v = 3/a and 8 is the reflection angle between the incident wave direction " and
the local gradient of the compressional P-impedance structure V(pa). To first order
in 6, the PP reflectivity is proportional to relative P-impedance contrasts A(pa)/(pa).
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The contributions from shear impedance and density contrasts are second and third
order respectively.

An equivalent linearization is given in a velocity parameterization by Aki and
Richards (?), but is less robust for the purposes of inverting seismic reflection data
because velocity and density cannot be unambiguously decoupled at small 6. For
forward modeling, either linearization is accurate when the relative perturbations in
impedance and density are small, and the reflection angles # are less than the critical
angle at which conical “head waves” emerge.

The seismic modeling equations (1.22), (1.23), (1.27) and (1.28) show that changes
in fluid-flow pressure, temperature and saturation, mapped to a, # and p changes
through rock physics transformations, will have an effect on the traveltimes 7 and re-
flection amplitudes PP in the seismic data u”" . If several seismic surveys are recorded
at different phases of production fluid-flow, the seismic response will change with cal-
endar time due to the coupled equations in fluid-flow, rock physics and elastic wave
theory shown above. For example, Figure 1.9 shows modeled CMP gather seismo-
grams, after moveout correction, before and after oil production from a horizontal
well. This example will be discussed in more detail in Chapter 3. The next section
addresses the topic of imaging changes in fluid-flow directly from multiple seismic
data sets recorded in “monitoring” mode.

Figure 1.8: Generalized reflection ray and angle geometries. | theory-anglegeom| [ER]

1.5.2 Seismic wavefield imaging

Given a seismic data set recorded at some calendar time T4, we would like to be able
to image the subsurface reflectivity structure Ry which generated the reflected waves
observed in that seismic data. Furthermore, we would like to obtain several reflec-
tivity estimates Ry, Ry, R3, ... corresponding to surveys over a producing reservoir at
calendar times 717, Ty, Ts..., and infer something about the change in subsurface fluid
flow from the changes in the R; maps. The required imaging procedure is called
“seismic migration” in the seismic exploration industry (?).

I briefly derive a “kinematic” Kirchhoff prestack depth migration equation which is
suitable for either 2-D or 3-D data acquisition, and incorporates single-arrival travel-
time and phase estimates. This migration equation yields accurate estimates of reflec-
tivity amplitudes for near-offset data, and provides an efficient and robust structural
imaging condition for all offset data, as shown by Lumley (7).

Given the Helmholtz variable-velocity a scalar wave equation

{V?+ (w/a)*} P(x,0) = S(x,w) | (1.29)
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the “downgoing wavefield” D generated by a single source at location x; can be
evaluated at any subsurface location x within a volume V from the frequency-domain
integral representation:

D(x,w;x,) = / G(x,w;x) S(x',w; x,) dx’ (1.30)
\%

where G/(x,w; ') is the Green’s function solution to (1.29) associated with the source
location, and S is the source wave function. If we neglect the absolute amplitude of
the source and consider only relative amplitudes in the migrated section, and assume
the source has a compact delta function shape in both space and time: 6(¢)6(x'—x;),
then the downgoing wavefield can be approximated by the source Green’s function
alone: D(x,w;x;) = G(X,w;X;s).

The “upgoing wavefield” U reflected from the subsurface x due to a source at x;
can be reconstructed from the seismic (scalar) data P = éT-uPP recorded at receivers
x, using a Kirchhoff integral representation:

U(x,w;x,) = / 1-VE(x,w;%,) P(X,,w;X,) dX, | (1.31)
S

where G(x,w;X,) is the receiver Green’s function and f is the unit vector normal to
the recording surface § that bounds the image volume V of interest. The gradient
operator V is taken with respect to the subsurface coordinate x along the recording
surface at x = x,.

Given that the reflected wavefield /' can be modeled as a convolution of the
subsurface reflectivity R with the source wavefield D, a local least-squares estimate
of R can be obtained as the weighted zero-lag correlation of the source and reflected
wavefields: R ~ > W U D*, where W are as yet unspecified weights, and D* is
the complex conjugate of D. If this weighted zero-lag correlation is further averaged
for all such single shot-profile migrations, the frequency-domain Kirchhoff migration
equation becomes:

R(x)m/w/x /X W [i-VG(x,w; x,)] G*(%,w;%,) P(%,,w; x,) dx, dx, dw . (1.32)

It can be shown that the reflectivity image R is proportional to a reflection-angle
averaged version of the PP coefficient in the modeling equation (1.27), and is a first
order estimate of the relative P-wave impedance contrast in the earth, as inferred
from equation (1.28):

A(pa)
(pa)

+ O(sin?9) . (1.33)

I next assume a parametric form for the Green’s functions G such that:
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G(x,w;X,) & Ay(x;x,) eFi@ratea) (1.34)

where opposite signs are chosen in the exponential for the source (outgoing) and
receiver (reverse-time extrapolated) Green’s functions respectively. The parameters
A,, 7, and ¢, are the single-arrival Green’s function amplitudes, traveltimes and
phase rotations from location x, to x. These parameters are often estimated by
conventional high-frequency asymptotic ray methods.

Given the parametric form (1.34), an efficient time-domain version of (1.32) can
be obtained as:

R(x) ~ / / cos 0, W ei‘b”fj(xr,xs;t = Te ) dX, dX; , (1.35)
Xs v Xp

where the “obliquity factor” cos 6, is a function of the incident angle at each receiver
with respect to the surface normal, and is obtained as the dot product (o, V7, -0).
The Kirchhoff space-time migration equation (1.35) is a weighted diffraction stack
of the preprocessed, deconvolved (but not divergence-corrected) data ]5, after phase-
rotation by the Green’s function parameters ¢g. = ¢s + ¢,, evaluated along the
diffraction trajectories given by the Green’s function traveltimes 7, = 7, + 7,.

I define kinematic migration by setting the migration weights W to unity. T note
that (1.35) is suitable for 2-D migration if all spatial coordinates are 2-vectors, e.g.
x = (z,z), and Pis preprocessed by the half-time derivative operator viw. However,
(1.35) is equally suitable for 3-D migration if all spatial coordinates are 3-vectors, e.g.
x = (z,y,z), and Pis preprocessed by the full time derivative 0;.

1.5.3 Seismic velocity analysis

The seismic migration equation (1.35) images subsurface reflectivity structure, which
is proportional to short-wavelength impedance variation. However, (1.35) is a non-
linear function of wave propagation velocity « to first order in traveltimes 7, and to
second order in amplitudes A. The coherency of any reflectivity image is therefore
dependent upon the accuracy to which the long-wavelength velocity structure « is
known. Velocity estimation is nonlinear, and reflectivity estimation is linear, given a
smooth estimate of the background velocity field. In general, the problem of estimat-
ing the short-wavelength reflectivity and the long-wavelength velocity are nonlinearly
coupled, and need to be solved simultaneously. In practice, the problem is usually
assumed to be separable and solved sequentially: first for the velocity and next for
the reflectivity.

A general nonlinear inverse problem can be posed to solve for long-wavelength
velocity and short-wavelength impedance as follows. A measure of coherency can be
defined as some function F of the reflectivity image R, which is itself a function of
the velocity «a,
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Coherency = F{R(a)}. (1.36)

Since the image is assumed to be most coherent at the correct velocity model, a
nonlinear optimization problem ensues, e.g., Symes and Carazzone (?). An opti-
mal velocity solution is obtained when the coherency does not improve with slight
adjustments to the velocity model:

OF {R(a)}

B =0 - ax). (1.37)

Equation (1.37) is the gradient of the image coherency with respect to velocity pertur-
bation, and can be used in a nonlinear steepest-descent or conjugate-gradient method
to iterate towards a final solution.

1.5.4 Seismic fluid-flow monitoring

The seismic migration equation (1.35) can be used to obtain an estimate of the sub-
surface reflectivity R for any seismic data set. This reflectivity image 1s an esti-
mate of the elastic PP scattering coefficient averaged over all reflection angles, and
is, to first order, proportional to the short-wavelength P-wave impedance contrasts,
R, = A(pa)/(pa), in the subsurface. If equation (1.35) is re-expressed as a common-
offset migration, “image gathers” can be constructed to estimate the angle-dependent
reflectivity at each point in the subsurface (?; 7). In this case the entire PP lineariza-
tion (1.28) can be fit to the image gather in an “AVO analysis” (?) to estimate both

P-impedance and S-impedance relative contrasts R, and R, at each subsurface point
(7,7, 7).

Information on the long-wavelength velocity structure a(x) is available in the
seismic data from the traveltime information 7, in the wavefield uPP, by solution of
the nonlinear velocity analysis system (1.37). The velocity structure a and reflectivity
image of R (or R, and Ry) estimated from a single seismic survey will be comprised
of coupled contributions from the reservoir geology and the fluid-flow states in pore
space. The estimation and interpretation of this information from a single seismic
data set can be defined as seismic reservoir characterization:

Characterization = a(x), R,(x), Rs(x) — rock 4 fluid .

Seismic reservoir characterization is a very difficult task because of the ambiguity in
trying to decouple geology effects from fluid-flow effects in a single seismic data set.

However, when multiple seismic surveys are conducted at separate calendar times,
it is expected that the reservoir geology will not change from survey to survey, but the
state of fluid flow will change. Therefore, differencing a series of reflectivity images
R; and velocity model estimates «; will remove the static geologic contribution to the
seismic data, and isolate time-varying seismic changes in the reservoir which are due
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to time-varying fluid-flow changes alone. The process of estimating and comparing
reflectivity images and velocity estimates from multiple seismic data sets recorded at
different calendar times can be defined as seismic reservoir monitoring,

Monitoring = 0 { a(x,t), Ry(x,t), Rs(x,t) } — fluid flow .

Seismic reservoir monitoring is potentially a much less ambiguous task than character-
ization, because the effects of geology and fluid-flow may be decoupled by comparing
time-varying seismic data sets.

Figure 1.10 shows a dramatic example of the changes observed in a seismic monitor
data set recorded over a steam injection site. The left panel is a migrated reflectivity
section before steam injection, the center panel is a migrated reflectivity section after
5 months of steam injection, and the third panel is the difference between the two
seismic results. Note the changes visible in the third panel due to a shallow borehole
steam leak (B), the steam injection zone (S), and a possible transient pressure front
(P). This data set will be discussed in more detail in Chapters 4 and 5.

1.6 Conclusion

I have discussed the physical theory relevant for three-phase fluid flow in a producing
oil reservoir, and rock physics transformations of fluid-flow pressure, temperature
and pore-fluid saturation values to seismic P-wave and S-wave velocity. | have linked
fluid-flow physical parameters to seismic reflection data amplitudes and traveltimes
through elastic wave-equation modeling and imaging theory. | have shown examples
of both synthetic and field data which demonstrate that changes in fluid-flow can
be monitored and imaged under certain conditions from repeated seismic surveys
acquired at varying production calendar times.
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Figure 1.10: 3-D migrated seismic time-lapse sections: before steam injection (left),
during steam (center), and the difference (right). “S” marks the steam zone, “B”
marks borehole heating by a possible steam leak, and “P” marks a polarity reversal
possibly caused by a transient pressure front. [theory-inline-migs-ann| [NR]




