previous up next print clean
Next: Velocity behavior of Model Up: HYDRATE FORMATION MODELS Previous: Hydrate formation only in

Saturated elastic moduli for Model 1 and Model 2

The effective dry moduli of the different hydrate frameworks have to be related to the effective moduli of the same rock-containing fluid. The effective moduli of a saturated rock can be calculated at seismic frequencies by means of Gassmann's formulas:
 
 \begin{displaymath}
{K_{sat} \over {K_{solid} \: - \: K_{sat}}} \: = \: {K_{dry}...
 ...}}} + {K_{fluid} \over {\phi \: (K_{solid} \: - \: K_{fluid})}}\end{displaymath} (9)

 
 \begin{displaymath}
G_{sat} \: = \: G_{dry}\end{displaymath} (10)

where Ksat and Gsat are the effective bulk and shear moduli of the saturated rock; Kdry and Gdry the moduli of the dry rock; Kfluid and Gfluid the moduli of the fluid; and Ksolid the bulk modulus of the mineral material making up the rock. $\phi$ is the porosity of the saturated rock.

The effective moduli of the mineral Ksolid can be calculated using the Voigt-Reuss-Hill average, which is an arithmetic average of the Voigt upper bound (KV) and the Reuss lower bound (KR):  
 \begin{displaymath}
K_{solid} \: = \: {{K_V \: + \: K_R } \over 2}\end{displaymath} (11)

with  
 \begin{displaymath}
K_V \: = \: f \: K \: + \: f_h \: K_h\end{displaymath} (12)

 
 \begin{displaymath}
{1 \over K_R} \: = \: {f \over K} + {f_h \over K_h}\end{displaymath} (13)

where f and fh are the volume fractions of the grains and the hydrate, respectively. K is the grain bulk modulus and Kh is the hydrate bulk modulus.

In order to calculate the effective fluid bulk modulus Kfluid for partially-saturated rocks, we used the following equation:
 
 \begin{displaymath}
{1 \over K_{fluid}} \: = \: \sum_{i=1}^{N} {f_i \over K_{fluid_{i}}}\end{displaymath} (14)

where fi is the volume fraction of the fluid, N is the number of fluids, and Kfluid<<188>>i is the bulk modulus of the fluid.

After having derived the effective moduli of the saturated rock, we used the following relationships to find the seismic velocities in saturated rock:
 
 \begin{displaymath}
v_{p_{sat}} \: = \: \sqrt{{{K_{sat} \: + \: {4 \over 3} \: G_{sat}} \over \rho_{sat}}}\end{displaymath} (15)

 
 \begin{displaymath}
v_{s_{sat}} \: = \: \sqrt{ {G_{sat} \over \rho_{sat}}}\end{displaymath} (16)

where $\rho_{sat}$ is the density of the saturated rock,  
 \begin{displaymath}
\rho_{sat} \: = \: (1 - \phi) \: \rho_{solid} \: + \: \phi \: \rho_{fluid}\end{displaymath} (17)

$\rho_{solid}$ is the density of the solid phase, and $\rho_{fluid}$ is the density of the fluid phase which can be obtained from:  
 \begin{displaymath}
\rho_{fluid} \: = \: \sum_{i=1}^{N} {f_i \rho_{fluid_i}}\end{displaymath} (18)


previous up next print clean
Next: Velocity behavior of Model Up: HYDRATE FORMATION MODELS Previous: Hydrate formation only in
Stanford Exploration Project
11/12/1997