Chapter 1

Xtpanel - an interactive panel

builder

This appendix describes a program called ztpanel that T wrote, along with Dave
Nichols, to facilitate user interaction with existing non-interactive software. It is
used extensively at SEP to allow readers to interact with documents such as this
thesis, recreating the figures with the ability to try out new parameters or look at
alternative pieces of data. I have included a description of xtpanel here because I feel
it 1s a useful component in moving toward the goal of reproducible research that may
be of interest to readers of this thesis.

The xtpanel program manages a set of interactive objects on the screen. These
can either be specified on the command line or in a script file. The appendix contains
the manual page for xtpanel, which describes the command line and script file syntax
in more detail.

The following types of objects are supported:

e messages

o text fields

o dialog boxes

e sliders

e buttons

e menus

o lists

e toggle buttons

e variables (objects with no screen representation)

1.0.1 Object values

In xtpanel, each interactive object has a string value associated with it. Interacting
with the screen representation of an object will change its string value (e.g., moving
a slider sets the value to the value of the slider, typing in a dialog sets the value to
what you type, choosing an item in a menu sets the value to the string associated
with the menu selection.) The primary task of each object is to maintain its string
value.

1.0.2 Object names

Every object may have a name. This name is used to refer to the value of the object
in actions.

1.0.3 Object actions

Every object can also have a set of actions associated with it. These actions are
performed whenever the object’s string value is updated. If more than one action is
specified for an object, they are performed in the order specified. The action can be
one of five types:

QUIT Exit the xtpanel program.
PRINT Print a string to the standard output.
STRING Set the object’s string value to a new value.

ASSIGN Set another object’s string value to a new value.
SYSTEM Execute a command.

Enormous flexibility is gained by letting any object execute a command as the
result of interaction with it. Xtpanel can be used as a way of interactively connecting
existing Unix programs that do not have interactivity built into them. An impressive
example of this is an 80 line xtpanel script that acts as an interactive front end to
the Unix calculator program, be. This 80 line program (see the Calculator section
below) has similar functionality to the 2070 line C program xcalc distributed with
X windows.

An action may contain two types of special characters.

1. The string value of any object can be used in an action string by referring to its
name, preceded by a dollar sign. The following action string sets the value of its
object to the current string value of another object whose name is otherobj:

action="STRING $otherobj"

2. The string resulting from executing a command can be used in an action string
by enclosing it in backquotes. For example, the following action string sets the
value of an object to the current directory using the UNIX command pwd:

action="PRINT The current directory is ‘pwd‘"

The aim of this design is to allow the user to tie together existing Unix programs
while leaving as much flexibility as possible.

1.1 Examples

The following pages contain example xtpanel script files and screen dumps of the
corresponding interactive program. If you are reading this document on a CD all the
figures are interactive, if you click on the button associated with a figure the program
will be executed.

1.1.1 Simple buttons

The first script puts two buttons on the screen. Pressing one button quits xtpanel;
hitting the second button prints a message. Figure 1.1 shows the panel produced.

button={ label="QUIT" action="QUIT" }
button={ label="hit me" action="PRINT AARGH'\n" }

Figure 1.1: A simple panel with

two buttons. [NR]

1.1.2 Simple menu

The second script implements a menu. The resulting panel is shown in figure 1.2.

button={ label=quit action=QUIT }

menubutton={ label=numbers action="PRINT choice is $val \n"
item={ label=one value=1 }
item={ label=two value=2 }
item={ label=three value=3 }

Figure 1.2: A simple panel
with a menu and a quit button.
|tianel—menubutton| [NR] $# ohe

two

three

1.1.3 Simple interactive parameter selection

This exmaple shows how xtpanel can be used in conjunction with the cake rules for
an interactive document (?) to make a dull figure come alive. The default cake rules
for an interactive document check for the existance of a file called name.panel, whene
name is the name of a figure. If this file exists the rule will run xtpanel when the
button in the caption is pressed. Figure 1.3 shows a single synthetic event. When
the user presses the button in the caption they are asked to choose an NMO velocity
to flatten the event. Here is the xtpanel file that specifies the interactive program.

button={ 1label=QUIT action=QUIT }

slider={ label="Select a velocity for NMO"
min=1 max=5 value=2 format="%.2f" width=300
action="NMO <Dat/mmoin.H vel=$(val) | \
Wiggle title=""velocity=$(val)"" pclip=100 | Tube numcol=16 &"

}

message={ value=" hit ""ok"" to run the program " }

When the user clicks on the OK button the data has NMO applied at the chosen
velocity and the result is displayed on the screen. Fig 1.4 shows the interactive panel
in use.

1.1.4 Simple seismic processing pipeline

The next example controls a simple processing job using SEP software. A dialog box
is used to input a file name. This file is read into a bandpass filter program, then
converted to one byte per sample (for display) by the program Byte, then plotted.
Sliders are used to specify the cutoff frequencies for the filter, and for the percentile
of the filtered data that is clipped to the maximum intensity in the float to byte
conversion.

button={ name=QUIT action=QUIT }

button={ label=GO
action="Bandpass flo=$flo fhi=$fhi phase=$phase < $file \

Input hyperbola

97

g7

W

80

70

— —

- \

0 0.1 0.2 0.

3 0.4 0.5 0.6 0.7
sec

Figure 1.3: A synthetic dataset, click on the button to choose the correct NMO

velocity. [ER]

B s I Reztart I

[¢] xtpanel

Forwards " 0 "delau 1,05 I

QUIT

Select a welocity for HHO

ok]]3.hl

hit "ok" to run the program

03 04 05

gag

Figure 1.4: The simple velocity selection panel in use. [NR]

> /tmp/band.h out=/tmp/_band.h@; \
Byte pclip=$pclip < /tmp/band.h | Ta2vplot | Xtpen; \
/bin/rm /tmp/band.h &"
}
dialog={ name=file label="input file'" value="Dat/wz.25.H" }
hbox={ name=noborder
vbox={
message={ value=Bandpass }
slider={ name=flo label=flo min=0 max=125 value=0 format="Y%.2f" }
slider={ name=fhi label=fhi min=0 max=125 value=125 format="Y%.2f" }
choice={ name=phase label=phase value=0
item={ label="zero" value="0" }
item={ label="minimum" value="1" }

vbox={
message={ value=Byte }
slider={ name=pclip label=pclip min=0 max=100 value=99 format="%.0f" }
}
}

input file
q2/wz/wz .25 .H

Byte

pclip
I 1

Figure 1.5: A panel to control the execution of two seplib programs. |tianel—simplepipe

[NR]

1.1.5 SEP data cube viewer

Here we use xtpanel not to process data, but to examine, sample by sample, the values
contained in a dataset. From an input three-dimensional dataset, a single plane is
selected (by a slider) and then the floating point values from that plane are displayed
in a two-dimensional scrollable text field.

The first script gets the file name from the user:

button={ name=QUIT action=QUIT }
dialog={ name=file value="Dat/cube.H" }
button={ label=GO

action="xtpanel -cpp -DFILE=$file -file viewer2.panel &"
X

and then calls a second script, which displays the data:

button={ name=QUIT action=QUIT }
dialog={ name=file value="Dat/cube.H" }
button={ label=GO
action="xtpanel -cpp -DFILE=$file -file viewer2.panel &"

}

file

select plane to view

[§
|0

Figure 1.6: A viewer to examine SEP data cubes. [NR]

Note that when the first script invokes the second, it uses the -cpp flag to pass
the second script through the C preprocessor. This is one way to pass variables from
one script to the next.

1.1.6 Directory lister

Now a more complicated script. This script can be used to navigate a directory
hierarchy. It puts all the files in the current directory into a list. When you choose
a file it does one of two things. If the file is a directory, it goes to that directory
and reruns the program to produce a new listing panel. If the file is a regular file it
performs the Unix command specified in the dialog. Note that the rules governing
newlines within an action allow us to embed a complete multiline shell script within
an action. The resulting panel is shown in figure 1.7.

button={ label=DONE action=QUIT }

hbox={
message={ value="Directory:" }

message={ value=‘pwd‘ }

dialog={ name=command label="Command for files" value="xterm -e vi'" }

list={ name=name label="NAMES"
action=" if test -d $val

then
cd $val
xtpanel -file examples/script/lister &
else
$command $val &
fill
itemlist={ list=‘echo -n .* * ¢ separator=" " }

X

[e¢] xtpanel

Directory: /tmp_mnt/wrk2/sep?b/stewve?

Command for files

xterm -e wi

HAMES

Cakefile Fig
Pipeline.panel buttons.panel
in.H lister.panel
menubutton. panel paper.aux
paper.bhl paper. dvi
paper.log paper. tex
parpanels

Figure 1.7: A panel to traverse a Unix filesystem. [NR]

1.1.7 Advanced seismic processing pipeline

Next is a multi script example. It is designed to allow the user to choose the param-
eters for a pipeline of three seplib processes. The main script is used to edit dialog
fields containing parameters that specify the input file and the parameters for each
of the three programs (Byte,Ta2vplot and Tube). Once the user is satisfied with the
parameters he can press the button at the bottom of the panel to run the command.
Figure 1.8 shows the main panel. Here is the corresponding script file. Notice that
the layout for each program is the same, it is defined in a macro and the macro is
used three times, once for each program.

button={ 1label=QUIT action=QUIT }
dialog={ name=input label="Input filename'" value="Dat/in.H" }

! macro for a dialog for a program called "NAME", a popup panel and self doc
#define PROGRAM(NAME) \

hbox={ name=noborder \
vbox={ name=noborder \
button={ label="NAME panel" \
action="ASSIGN NAME ‘xtpanel -file pars/NAME‘"} \
button={ label="NAME doc. " \
action="xtpanel -cpp -file pars/doc -DPROG=NAME -font fixed &" \
A\
A\
dialog={ name=NAME value=" R AN

PROGRAM(Byte)
PROGRAM(Ta2vplot)
PROGRAM(Tube)

! perform the action or popup an error dialog if the input doesn’t exist
button={ label="PRESS FOR: Byte | Ta2vplot | Tube"
action="if test -f $input ; then
<$input Byte $Byte | Ta2vplot $Ta2vplot | Tube $Tube &
else
xtpanel -message ’File $input does not exist’ -quit
fi "

[¢] xtpanel

IQUITI Input filename

IByte panell Byte

IByte doc. I L I

ITa2vplot panell Ta2vplot

ITa2vplot doc. I L I

ITuhe panell Tube
ITuhe doc. I L I

|erESs For: Byte | TaZvplot | Tube

Figure 1.8: A panel to control the execution of three seplib programs.
[NR]

Each parameter file dialog has a two buttons next to it. The lower button invokes
a script that causes the program to self document. This documentation is shown in
a text object. The script to do this is very short, note that the preprocessor is used
to replace “PROG” by the appropriate program name. (The connection of stdin to
/dev/tty is to force the program to self doc.)

button={ label=DONE action=QUIT }
text={ value=‘(</dev/tty PROG 2>&1)‘ height=400 width=500}

Pressing the upper button brings up a subsidiary panel that contains interactive
objects that can be used to specify the parameters. When the subsidiary panel is

10

IQ_UITII Input filename
[e] xtpanel

2]
o

Taplot Byte - convert data to raster format ,
PLOT = clip{ [<DATA - biasx#{it*dl+olr**tpow lkkgpow *

SYNOPSIS
Bute par= < inH > in.T

PARAMETERS
from par:
tpow=0 1 gainfit} = (it*dl+ol)*ktpow, it in samples
pclip=93 1 clip percentile
phalf=85 + gpow percentile
gpow=1 + if given gpoud=0, sample gain power computed at phalf
bias=0,0 + plot = data - bias
gainpanel=1 1 planeis? where gpow and clip are estimated
=i 3 ith plane is used { i is integer
=all 1 all the planes are used
=every § calculate gain parameters for every panel
gainztep : the subsampling rate used in estimating gpow and clip
default = max{l.nt/2563 (>=1)
allpas=ndy + if yes, map only positive walues to (-280
transp=nao t if yes, saves Movie the trouble of transposing t and i

[
E
=
=
E
=

[E]

from history:
nl.n2,n3 + cube dimensions

to history:

Figure 1.9: The documentation produced by pressing the Byte doc. button.
St vetr] [N

closed the dialog is set to contain the parameters chosen on the subsidiary panel.
Figure 1.10 shows the panel for Byte. The script file for this panel follows.

slider={ name=pclip min=50 max=100 value=98 format="%.1f" }
slider={ name=gpow min=0. max=4. value=1. format="%.2f" }

menubutton={ name=gainpanel label="gainpanel=>" value=1
itemlist={ list="1 every all"}
X

choice={ name=transp value=n
item={ label=yes value=y }
item={ label=no value=n }

button={ label=Done
action="PRINT pclip=$pclip gpow=$gpow gainpanel=$gainpanel transp=$transp "
action=QUIT

Finally Figure 1.11 shows the result of pressing the bottom button to run the
command. Notice that the self doc is still available, as the xtpanel process to perform
the self doc is run in the background. The final command is also run in the background
so that you can have multiple results visible on the screen at the same time so that
they can be compared.

11

[8] xtpanel mt filename

d 2 Byte
-m I pcl ip:BB.i

gpow

gainpanel ==

panel TaZwvplot

doc. L I

1

transp

Figure 1.10: The panel for interactively setting Byte parameters is obtained by press-

ing the “Byte panel” button. [NR]

1.1.8 edlD

Jon Claerbout (?) developed the interactive program ediD to allow users to experi-
ment with various aspects of one-dimensional seismology. Among other things, ed1D
lets the user edit a function in the space or spatial frequency domain, and see the
result in the other domain. In Figure 1.12 we implement this particular aspect of
ed1D in an xtpanel. The script is 240 lines long, so we have not included it here. It
is available on the CD-ROM version of this report.

1.1.9 Calculator

Figure 1.13 is an example that emphasizes xtpanel’s ability to take advantage of the
many powerful but non-interactive features built into UNIX. The be calculator built
into UNIX has most of the features of a standard scientific calculator. But it lacks
a nice interactive interface. The X windows source distributed by MIT contains an
interactive calculator xcalc. Written in C, xcalc is over 2000 lines long, and doesn’t
take advantage of the calculator already available in UNIX. The xtpanel script uses
the bc calculator and provides an interface similar to that of xcalc. The script is 80
lines long, and available on the CD-ROM version of the report.

It is likely that this 80 line script required much less time to write than the xcalc
application. And because the script syntax is very simple, adding features to this
calculator would be a much easier task than adding features to xcalc.

12

F.oi=14 0%

SUOTSeMp agrs 3 SUSFLTA
IRJCYETY oy

B 24F 3 Bursodsuzal o STCNOUY Yy A1ACL =Enes Czaf T ol QU=cELE]
G57-1 01 sar(ew antirsod Fluo dow “saf 4T o3 R u=scdyy=
(T=0r (958U T0sEd = 4 TheSF
dr1a pue rcdS GarTqEutoss UT 23sn aged Eutpduesgns aLg @ dagsutes
12ed fidana ocy sasjaweded LIES 29E Na|EC 1 Fdanas
Jash adE S2USd ayyp |1E 3§ [[E=
¢ JeEsuT ST [y pEsEn ST 2uetd yart 3 =
pejeaTiEa ade difd oue nodE aEm fEiauelc 3 ~=]AuECUTES
=RIC — 23Ep = Z0]c % a'c==21]
W41=4d 38 FEandwad Jdanod LIES afdues cg=hm0dS waatB 4T 3 T=mods
=1134304ad mocE 3 Ga=41=yd
=1T34204ad dis 3 ge=ctIT=d
sapduzs Ut ST Modlgx [TO+TR#3Tr = [37UIEE 3 (=mody
Ted woayg
S 3HHEEL
M1 < T =aed agfig saem omeld sarsindrng

SI5d0HAS

£ modBig [mOdes O+ TR REEI - EIRTY 1 34709 = 104
* 3TN0} J3TEEJ I3 BYEP CoEAU0D - 83RE qCTde]

JHHH

|2ana | acrdagesr | 23R8 ruoa ssmual

s | | T |

20T, —Hm.ﬂm.m m..u.:._.—

T-zotoo 11 | oor 3o1dagea]

joTdazel | | 1eued jordageal]

| 1sued =qA=]

sweusT1§ jrdug

“pop =3Ag —

I] | L _S”___ﬁﬂmmm___m_ﬁ_ e £ T ey

jpuediz | seogsoews | seomsoews x| wedmsoews [uadqx [«

xtpanel-result [NR,]

The result of pressing the action button.

Figure 1.11

13

[Hold down meta key to draw function, then do transform

offset wavenumber

i i

- [Feset_varss] [Resct vatues)

IDo forward transforml IDo inverse transforml

Figure 1.12: An xtpanel analog to Jon Claerbout’s ed1D program, for experimenting

with Fourier transforms. While this version is crude compared to the actual ed1D
program, it took only about one hour to write. [NR]

trig units

CICEICE] L 2l zz]=y]

M = R
EE m Isin"cos"tan" PII
N | | E ES A IEIES

Figure 1.13: A calculator built using xtpanel. The 80 line script gives a calculator
with features comparable to the 2000 line C program xcalc. [xtpanel-calculator| [NR]

14

1.1.10 The xtpanel generator

While the xtpanel script language is intended to be easy to read and use, it would
be nice if it weren’t necessary to learn it in order to use xtpanel. For this reason, we
created the xtpanel generator. This is a series of xtpanels that let the user build a
panel interactively, object by object. Figure 1.14 shows the top-level generator panel.
Buttons are provided to add the various objects to the panel. At any point, the
resulting script file can be examined, or previewed by running xtpanel on it.

File name for xtpanel script
L$HOM:E:/ xtpanel.out |

IExamine script filel

IDelete script filel

IRun xtpanel on script to see the panell

ImessagellbuttonIlsliderlldialoglltextl

IchoicelllistllmenubuttonIlquit buttonl

Istart a box

Figure 1.14: The xtpanel generator is a series of xtpanel scripts that let users build
new xtpanels interactively. |xtpanel-generator| [NR]

1.1.11 Interactive help facility

Scrolling through a lengthy manual page to find a particular topic can be tedious.
We created an interactive help facility for xtpanel, which is a series of panels that
present, in a menu-driven form, the various parts of the manual page, along with
some other pertinent information. The top level panel of the help facility is shown
in Figure 1.15. General information is shown in the scrollable text field on the main
panel; the menu lets the user choose from a list of additional topics.

1.2 Comparing xtpanel and other products

Many software packages address the general problem of building a graphical interface
to simplify life for the end user. Xtpanel is worthwhile only if it offers something that
these other packages (many of which are public domain) do not.

15

About xtpanel
message object

text object Ey way of producing a panel
button object fuch as buttons, sliders, and

. X mand line or from an xtpanel
dialeg object maintains a string represen-—
slider object bject is modified it updates
choice object fkm an act:l.t?n such as printing

X K pmmand. Objects can make use
list object bots in constructing their

menubutton object pactive X windows program,
item subobject Rl programming.

itemlist subobject
variable object

Actions

Boxes

Script vs. command line
Script syntax details
Resources

Command line interface
Xtpanel generator
Xtpanel examples

th xtpanel. The first is a

Fig/help.p:

Figure 1.15: The xtpanel interactive help facility. The main panel displays general
information, and a menu allows users to choose from a list of other topics.
[NR]

Some packages are complete graphical user interface builders. These programs let
the user create an object, move it around on the screen or change its attributes — all
interactively. While these programs are very powerful, they also tend to be somewhat
difficult to use. Typically the work must be done interactively; the various configu-
ration files are verbose and not easily edited by the non-expert. Such packages also
are usually more self-contained; it is not as easy to integrate existing non-interactive
UNIX software as it is in xtpanel.

Another set of tools takes a simpler approach, with all the configuration informa-
tion specified on the command line. Two examples, distributed with the X windows
source code from MIT, are xmessage and xmenu. These construct a panel with a set
of messages, or a menu with several items. While such tools are very easy to use,
they are typically quite limited in what they can do.

Xtpanel was designed to fill in the gap between these two classes of tools. It is
meant to be very easy to use, but capable of generating panels that are complex and
powerful. Also xtpanel takes more advantage than many other products of the power
of UNIX, making it easy to run system commands and to incorporate their results
into the action of the panel.

1.3 Interactivity with xtpanel

In Figure 1.5, xtpanel was used to create an interactive frontend to an existing seismic
processing program, the bandpass filter program Bandpass. While building frontends
in this way can be useful, often the overhead of having to re-run the entire job makes

16

this level of interactivity unsatisfying. Here we describe a way to use the interactivity
of xtpanel from within programs.

Using xtpanel from within a seismic processing program offers some advantages. In
the filtering example above, because the entire process is re-run each time a parameter
is changed, a lot of extra work is done. Each time the RUN button is pressed, the input
dataset (containing a single impulse) is recreated. Then the filter program must read
in the data, as well as the parameters necessary to run the job. In such a trivial
example, this extra work does not take much time. But in larger tasks, the extra
overhead required to completely re-run a job may make the interactive performance
poor.

To solve this problem, we devised a way to use xtpanel from within a processing
program. After reading in its data and getting set up to run, a program brings up
an xtpanel containing objects that specify some of the program parameters. Then
the program waits for input from the xtpanel. When input is received, the program
executes, and then waits for additional panel input. Additional panel input causes
the program to be re-run, but without having to do all the overhead that was done
at the start of the program.

The first program to use this interaction is a seismic data cube viewing program
called Cubeplot. Cubeplot displays a perspective view of a seismic data cube. Dis-
played on the three faces of the cube are slices taken from within the data volume.
In its standard batch mode of execution, the user specifies on the command line the
three slices to be shown. If, on the command line, the user specifies popup=y, then a
panel containing three sliders appears. As the user changes a slider, a different data
slice 1s displayed on one of the three cube faces.

The xtpanel script is built into the C language source code for Cubeplot. Here is
the script:

button={ label=Quit action="PRINTQUIT" action=QUIT }
vbox=9{
hbox={ name=noborder width=400
message={ value=axis-1 }
scrollbar={ label="axis 1" name=panl min=0 max=N1 format="7%.0f"
width=300 value=FRAME1
action="ASSIGN vall $val"
action="PRINT framel=$(panil) frame2=$(pan2) frame3=$(pan3)\n"

}
message={ name=vall value=FRAME1 1}

hbox={ name=noborder width=400

message={ value=axis-2 }

scrollbar={ label="axis 2" name=pan2 min=0 max=N2 format="Y%.0f"
width=300 value=FRAME2
action="ASSIGN val2 $val"
action="PRINT framel=$(panil) frame2=$(pan2) frame3=$(pan3)\n"

}

message={ name=val2 value=FRAME2 1}

hbox={ name=noborder width=400
message={ value=axis-3 }
scrollbar={ label="axis 3" name=pan3 min=0 max=N3 format="Y.0f"
width=300 value=FRAME3
action="ASSIGN val3 $val"
action="PRINT frameil=$(panil) frame2=$(pan2) frame3=$(pan3)\n"

17

}
message={ name=val3 value=FRAME3 1}

}
}

However, the user can substitute a different script, containing whatever program
parameters are of interest. Here are the instructions that appear in the on-line pro-
gram documentation:

popup Specifying popup=y brings up an xtpanel (if you have xtpanel
installed) with three sliders. Moving these sliders changes
the frames plotted on the three cube faces. If you pipe
the output of Cubeplot to "Xtpen cachepipe=n'" you will see
the display update as the sliders are moved.
You can specify your own xtpanel script file by doing
popup_file=filename.

The program then calls two subroutines: popup_start brings up the xtpanel. This
is called after the program’s preliminary work (reading in the input data, getting
parameter values, etc.) has been done. A second routine, popup_check is called after
each pass through processing the data. This routine waits for output from the xtpanel.
It then adds the new output to the table of parsed command line arguments. L.e. if the
user moves a slider and the xtpanel prints “framel=100" then after popup_check it is
as though “framel=100" had been specified on the command line. When this routine
returns the program reprocesses the data (in the case of Cubeplot case plotting a new
figure) using the new parameters.

Users interested in the details of these routines are referred to the CD-ROM version
of this report, where the source code for Cubeplot and the popup routines is contained.
The most important point to make about the source is that the modifications to the
Cubeplot program were quite small — just two subroutine calls, and a few lines to
interpret the new parameter values that come back from the panel. Interaction can
easily be added to any program in this way.

Figure 1.16 displays a typical interactive session using the built-in xtpanel inter-
action of Cubeplot. If you are reading the report on CD-ROM, pressing the button
at the end of the figure caption will bring up this example. Moving the sliders will
change the display.

It is worth noting that although Cubeplot is a C language program, the xtpanel
popup facility can just as easily be used from within Fortran and Ratfor programs.

Xtpanel future possibilities

We wrote xtpanel to fill a need, to add interactivity to the large library of non-
interactive seismic processing programs available at SEP. In addition to making day-
to-day data processing chores easier, this interactivity is also useful in building tu-
torials and interactive documents, such as this report. While other public-domain
interface-building software exists, we believe that no other simple package is flexible
enough to meet these needs.

18

Gulf of Thailand 3D Movie

Figure 1.16: Interactive Cubeplot session using xtpanel. The xtpanel is brought up
from within the program. Each time a slider is moved, a subroutine is run to re-draw
the image. CD-ROM readers can click on the button at the end of this caption to

run Cubeplot. [NR]

19

Because it does not depend on other SEP software or geophysical software in
general, xtpanel has been distributed through several public-domain source channels.
Feedback from interested users has helped xtpanel to evolve to a reliable state in a
short period of time.

There are several minor ways in which xtpanel could be improved in the future.
Support of Motif in addition to the MIT Athena widget set would make xtpanel
compatible with the software environments of more potential users. Because of the
modular way in which xtpanel has been written, and because the Athena widgets
and Motif have many features in common, adding Motif support would not be very

difficult.

Another promising possibility is to be able to put images (pixmaps) in the back-
ground of xtpanel objects. If this were possible, one could, for example, very quickly
build seismic tools that incorporate data picking, by having an image of the data in
the background of certain interactive objects.

