Appendix A

3-D Interpolation Applied to
Passive Data

A.1 Interpolation

Jon Claerbout (?) developed a 2-D interpolation scheme based on a mono-planewave
assumption. To fill in a gap between two traces, a spatial prediction method is used
to determine the dip, and the missing traces are constructed by combining the two
known traces from either end of the gap, with time shifts and weights appropriate to
the estimated dip and the various distances.

In three dimensions, the location of a trace to be filled in by interpolation will
not always lie on a line drawn between some pair of input traces. Thus while it was
sufficient in 2-D interpolation to find the apparent dip between two traces, in 3-D
interpolation we need to find the true dip. A pair of traces is insufficient for finding
the true 3-D dip. At least three traces must be used, since three points are required
to define a plane.

Given this realization, a simple 3-D analog to Claerbout’s 2-D mono-planewave
scheme can be proposed. To construct a trace at a location, examine the three
nearest traces. Use the spatial predictor described in Claerbout’s paper to find the
dip between one pair of traces, then another pair (with a different source-receiver
azimuth). From these two apparent dip measurements, the true dip can be recovered
and used for interpolation, following Claerbout.

I develop a slightly more general alternative to this simple approach, one that uses
an arbitrary number of neighboring traces and is less susceptible to problems that
might be caused by a single bad trace.

A.1.1 Implementation

The steps in Claerbout’s 2-1) method can be summarized as follows:



o Identify a gap of missing or dead traces.

e Estimate coherence between the two traces at the ends of the gap, for all possible
dips, using small overlapping time windows.

e For each time window, pick the best dip.

e Fill in each dead trace with a sum of the two end traces, each time shifted
according to the dip, and weighted by distance.

In 3-D there are some additional complications. The location at which we wish
to construct a trace by interpolation may not lie on a line connecting two live traces,
particularly if the spatial sampling is irregular. When there is such a line, we could
follow the 2-D logic and apply the prediction scheme to the two traces. This would
give an estimate of the dip along that profile — the apparent dip, not the true 3-D
dip. The true dip and apparent dip are related by (Slotnick, 1959):

sin ¢ = cos(f — 0') sin ¢, (A1)

where ¢ is the true dip, ¢’ is the apparent dip, and 6 and 6’ are the azimuth angles of
the down-dip direction and the direction along which the apparent dip is measured,
respectively.

We could shift the two traces using this apparent dip and sum. A better idea,
however, and a necessity for the case of irregular spatial sampling, is to estimate
instead the true dip, using a number of nearby traces. We need at least three; from
two we can only find the apparent dip in one direction.

We take the three or more nearest traces, two at a time, and apply the spatial
prediction operator, as in the 2-D case. This gives us the coherence as a function
of the apparent dip along the direction joining the two traces. Having done these
computations for each trace pair, we then loop over all possible 3-D dips (a two-
dimensional space, p, vs. p,). For each dip, given the orientation of each trace
pair, we compute what apparent dip we would see given a particular true dip. The
coherence for this apparent dip is extracted from the table constructed earlier, and
the coherencies are summed for all trace pairs. The result is a 2-D image of what we
will call “generalized coherence” as a function of p, and p,. From this, we pick the
best dip.

Then, for each of the neighboring traces, given the true dip, we compute the
apparent dip along the line joining the trace and the location of the trace to be
interpolated. This gives for each trace a time shift. The three or more neighboring
traces are time shifted, weighted based on their relative distances, and summed to
produce the interpolated trace.

The steps in the 3-D scheme can be summarized as follows:

e For a given output point, find the N nearest live traces.



e Estimate coherence between each pair of traces in the group, for all possible
apparent dips, using small overlapping time windows. Tabulate the results.

e Loop over all 3-D dips (true dips), parameterized by p, and p,. For each (p, p,)
pair:
— Given the true dip, compute the apparent dip between each pair of traces.

— Extract the coherence for that apparent dip from the tables computed
earlier.

— Add coherencies for all trace pairs to get a generalized coherence for this
dip.

e Scan over all (p;,p,) a second time to see which dip has the best coherence.

Pick the best dip.

e Construct the output trace as a sum of the N neighbors, each time shifted
according to the true dip, and weighted by distance.

These steps are illustrated graphically in Figures A.1 and A.2.
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trace pair. |interp—idraw—stepl| [NR]

I nput

Input

A.1.2 Synthetic example

In this section, we test the algorithm on a simple synthetic dataset to illustrate its
operation. Figures A.3 and A.4 show a number of slices taken through a synthetic 3-D
cube, before and after interpolation. The cube contains 13x13 traces and 128 time
samples. The geometry mimics the SEP passive experiment (Nichols et al., 1989)
with a 38.1 meter spacing between traces in both directions.

The dataset contains four dipping events. One is near-vertically incident (apparent
velocity 8 kilometers/second). A second has a low apparent velocity of 2 km/sec, and
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the third and fourth are close in both apparent velocity and azimuth angle - one has
an apparent velocity of 3 km/sec and a down dip azimuth of 30 degrees (relative
to the x axis) while the other has an apparent velocity of 4 km/sec at an azimuth
of 60 degrees. Roughly half of the 169 traces were randomly removed prior to the
interpolation, which was used to restore the missing data.

In this example, and in the real data example to follow, the five nearest traces were
used to construct each interpolated trace. Since the contributing traces are weighted
in inverse proportion to their distance from the output location, if the output location
is the same as the location of one of the contributors, that trace gets a weight of one
while all others get zero weight. In other words, the interpolated result honors the
input data.

The interpolation has done a good job for the most part. Problems can be seen
in a few places, such as in the crossline slice displayed at a larger scale in Figure A.5.
There the top two events, the 8 km/sec and 2 km/sec events, cross. At the crossing
point there is no problem, as whichever dip is picked works fairly well for both events.
But there is a problem when the two events are near one another. Then they are
close enough for both dips to occur in the same small computation window used by
the program. But since only one dip is picked, the treatment of the second event can
be poor.

The dips picked by the algorithm are tabulated and output by the program as an
optional diagnostic. A contour plot of the dips picked for the synthetic is shown in
Figure A.6. The 8 km/sec and 2 km/sec events can be seen at the center and bottom
of the plot, respectively. The two events with quite similar dips give two maxima
close together, in the upper right quadrant.



Figure A.3: Four crossline slices from synthetic dataset, before (left) and after inter-
polation. | interp-synth-xlines | [ER]




Figure A.4: Four inline slices from synthetic dataset, before (left) and after interpo-
lation. |interp—synth—in]jnes| [ER]
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Figure A.5: A single crossline slice shown at a larger scale. The only significant error
occurs just to the left of the point where the top two events cross. There the two dips
occur in the same computation window, but only one is picked, and the treatment of
the second one (the flatter event) is poor. [interp-synth-1xline| [ER]
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Figure A.6: Contour plot of dips picked by algorithm as a function of p, and p,.
The 2 km/sec and 8 km/sec events are shown at the bottom and near the center.
Although not well separated in apparent velocity or azimuth, the other two events
are clearly distinguishable. |interp—synth—picks| [NR]




A.1.3 Quarry blast example

We have applied the method to a real 3-D dataset, the record from the SEP passive
experiment containing the largest of the three quarry blasts.

The blasts were recorded late in the experiment, with many of the recording
instruments beginning to fail because of dead batteries. At the time of the record
used here, 87 of the 169 instruments had failed. The interpolation scheme gives us the
opportunity to estimate the missing data. Actually the interpolations shown here, in
Figures A.7 through A.10, are done onto a 25x25 grid, with half the original spacing,
to make the data cube a little larger and easier to view.

The dips picked by the algorithm are shown in Figure ??. Most of the picks are
off to one side of the center of the plot — this indicates a dominant arrival direction,
not surprisingly in the direction of the quarry. The range of dips for these arrivals is
consistent with other analyses that have been done on the quarry blast data.

Note the significant number of picks around the edges, at very low apparent ve-
locities. The prediction filtering used to estimate coherence as a function of dip is
similar to a crosscorrelation of the two traces. Given a fixed data length, correlation
uses more data for smaller lags than for larger lags (lower apparent velocities) where
it must avoid going off the end of the trace. Coherence values for the lower apparent
velocities, then, are based on less data; this introduces a bias that makes the extreme
points more likely to be picked, we believe. This problem can easily be circumvented
by padding the input data to allow for a uniform correlation length.

A.1.4 An alternate approach - plane fitting

Spatial prediction gives us the coherence as a function of apparent dip, measured
along a number of azimuths. As an alternative to the dip scanning method used
above, we could pick the best apparent dip for each trace pair, and then from these
many apparent dips, select one (or more) true dips for interpolation. For example,
we could fit a single plane to all the apparent dip measurements using least-squares.
The overdetermined problem looks like this:

cosf; sinf] sin ¢}

cosf, sinb, sinpcosf\ sin ¢, A2
: <sinq§sin9)_ : (A-2)

cosfy sinfy, sin ¢y

Here the unknows are ¢ and 6, the dip and azimuth angles of the true dip, the
plane we are fitting to the data. The known ¢! and 6! are the measured apparent dips
and the azimuth angles along which they are measured.

In the presence of a single dip, this method works well, and is significantly less
costly than a global search of the dip space. In the presence of multiple dips, however,
the least-squares technique will choose an intermediate dip to minimize the error, a
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Figure A.7: Crosslines from quarry blast, before (top) and after interpolation.

| interp-blast-xlines | [CR]
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Figure A.8: Single crossline from quarry blast, before (left) and after interpolation.
| interp-blast-1xline | [CR]
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Figure A.9: Inline profiles from quarry blast, before (top) and after interpolation.

| interp-blast-inlines | [CR]
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Figure A.10: Single inline profile from quarry blast, before (left) and after interpola-
tion. |interp—blast—1inline| [CR]
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Figure A.11: Contour plot of dips picked by algorithm as a function of p, and p,.
Most picks lie below the origin, indicating energy incident on the array from the
south, the direction of the quarry. [NR]

dip which may not interpolate any of the dips particularly well. The dip-scanning
method presented above will at least interpolate one dip, that which gives the best
coherence, well.

The best solution to the case of conflicting dips may be a plane-fitting approach
that fits multiple planes to the set of apparent dip measurements. Fitting multiple
planes is significantly more difficult than fitting a single plane. Possibly an L.1-norm
scheme could help.

A.1.5 Application: removal of cross-line smear

The theory behind the interpolation scheme presented here could also be used to
address the problem of cross-line smear in 3-D marine surveys, discussed by Yilmaz
(?). Cable feathering causes midpoint locations to be distributed over the cells of a
3-D marine survey. If there is a significant amount of cross-dip in the subsurface, this
midpoint scatter brings with it time shifts that cause a departure from hyperbolic
moveout, and a smearing of the stacked amplitudes. Removal of the midpoint smear
requires an estimate of the dip. The algorithm described here could be used to
automatically determine the dip. Time shifts could be computed and applied to map
all midpoints to the cell center.



