Introduction

“The reason for this proposal is our belief that the correct understanding and so-
lution of many problems in reflection seismology depend on the more rigorous and
exact analysis that can be obtained by faithfully solving the wave equation.” - Jon
Claerbout, proposal to initiate the Stanford Exploration Project, 1973.

0.1 Why migration to zero offset?

Migration to zero offset (MZO) is an operation that transforms a common-offset sec-
tion into a zero-offset section. In constant velocity media MZO is equivalent to the
normal moveout correction (NMO) followed by the dip moveout correction (DMO).
For variable velocity media NMO and DMO do not transform a constant-offset sec-
tion into a zero-offset section, and consequently there is a need for a new operator

definition, i.e. MZO.

Obtaining an image in a variable velocity media requires various forms of prestack
depth migration which are wave-equation derived algorithms. NMO, on the other side,
is a data derived technique that attempts to align the reflections in the best way for
enhancing common-midpoint stacking. DMO bridges the gap between data driven
imaging techniques and wave-equation imaging techniques, but is analytically defined
only for constant velocity media. MZO tries to narrow, or even close the gap between
wave-equation imaging techniques like prestack migration and data driven imaging
techniques like NMO by defining a wave-equation derived operator valid for variable
velocity media.

The next section gives a list of enhancements to the data that DMO or MZO of-
fers. From a computational point of view, one of the most valuable properties of the
MZO operator is that it is a spatially compact operator. Another important property
of the MZO operator is that it images in time and therefore it can handle implicitly
velocity and anisotropy structures. Compared to the prestack migration operator
that increases in aperture with depth, the MZO operator decreases in aperture with
velocity and depth. This in turn ensures that data is spread or summed over smaller
distances and therefore the opportunity to damage the information using the wrong
velocity or the wrong amplitudes is diminished. This is an important property, useful



for amplitude versus offset (AVO) studies or in general any offset comparison tech-
niques. This property also promises a computationally cheaper prestack migration
alternative.

0.1.1 DMO and MZO kinematics

The most general wave-equation definition of the MZO operator is the one proposed by
Deregowski and Rocca (1981) who describe migration to zero offset as the combination
of prestack migration followed by zero-offset modeling. A more accurate description
for MZO0, if we assume the modeling operator to be a forward operator, would be
the combination of prestack inversion followed by zero-offset modeling, but these are
secondary details to understanding the physical nature of MZO.

Following Deregowski and Rocca’s definition of MZO, I was surprised to find
out in my earlier work (Popovici and Biondi, 1989; Popovici 1990), that the impulse
response of the MZO operator in media with only depth velocity variations can be very
different from the impulse response of the combined NMO plus DMO; in particular,
triplications appear in the kinematics of an operator that was supposed to be very
simple and nicely behaved. The difference between the variable velocity impulse
response of the MZO and the standard NMO and DMO impulse response was the
first reason that motivated me to look further into this research topic.

Figure 0.1 shows the difference between the impulse response of the NMO and
DMO operator and the kinematics of the MZO operator. The velocity model is a two
layer model, with an upper velocity of 1500 m/s and a lower velocity of 3000 m/s. The
left panel shows the standard NMO and DMO impulse response, while the right panel
shows the impulse response of the MZO developed in this thesis. Overlayed is the
more accurate impulse response computed using the Deregowski and Rocca definition
by doing prestack migration followed by zero-offset modeling using finite difference
traveltimes. The Deregowski and Rocca impulse response shows triplications due to
the transition zone between the two velocity layers.

The difference in the DMO operator and the MZO operator is significant even for a
very simple depth-variable velocity model. The impulse response on the right, which
shows a very good kinematic equivalence to the Deregowski and Rocca operator, was
computed using the MZO phase-shift algorithm described in this thesis.

It is known that for a linear increase in velocity DMO applied after NMO with the
correct Vs undercorrects the diffraction branches (Hale, 1984). For the simple two
layer velocity model shown in Figure 0.2, the effect of DMO on diffraction hyperbolas
is opposite to the effect on dipping reflectors. For dipping reflectors DMO overcorrects
the curvature, as shown in Figure 0.3a. As a result, techniques to adapt the DMO for
variable velocity which are based on squeezing the DMO ellipse will align only one
event correctly while degrading the alignment for the other.

Figure 0.2a shows three dipping reflectors in a medium with the depth variable
velocity shown in Figure 0.2b. Figure 0.3a shows the effect of DMO on the synthetic
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Figure 0.1: The impulse response of the DMO plus NMO operator compared to
the impulse response of the MZO operator in a 2 layer medium. The kinematics of
the MZO impulse response computed using the Deregowski and Rocca definition are
overlayed on top. |[intro-DMOandMZOimps | [CR]
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Figure 0.2: Zero-offset section and the velocity model.
a. Zero-offset section showing three dipping reflectors in a two layered medium and
the diffractions associated with the reflector ends.

b. Interval velocity in time. [ER]



common-offset data. The events sloping upward are dipping reflectors while the
events sloping downward are diffraction hyperbola branches. After applying DMO
with the squeezing correction ~, the reflector alignment is better while the diffraction
alignment is worse. The conclusion is that for some depth-varying velocity media,
simple modifications to the DMO algorithm that do not take into account the multiple
branching of the operator could degrade the stacked image.
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Figure 0.3: Standard DMO, and DMO using the ~ correction.

a. Several CMP gathers after NMO and DMO.

b. Several CMP gathers after NMO and DMO wusing the ~ correction.
| intro-DMOwgamma | [CR]

0.1.2 DMO in the North Sea

An area of extensive seismic exploration, the Central Graben in the North Sea, seems
to present a difficult problem for constant velocity DMO. In imaging seismic data
from such an area, an accurate depth-variable MZ0O could bring improvements in
stacking the steeply dipping flanks of domes.

Hawkins (1994) describes the geology of the Central Graben in the North Sea,
where a dramatic velocity gradient seems to require a good v(z) DMO. A typical
Central Graben velocity profile consists of a water layer, followed by about 3000 m
of Tertiary and younger sediments with an average velocity of 2000 m/s, followed by
a hard Chalk with velocities increasing abruptly to 4000 m/s, and in some intervals
to over 5000 m/s. In this background velocity are several salt domes that seem
to present a serious problem to the geophysicist trying to image their flanks using

standard DMO methods.
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Figure 0.4 shows the kinematics of the traveltimes in a constant-offset section
and a step function interval velocity profile that is similar to the North Sea Central
Graben velocity profile. The thick line in Figure 0.4 represents the right half of an
isochrone in the constant-offset traveltime map. There are three sections along the
isochrone, that can be separated from a kinematic point of view. The branch in
Figure 0.4, corresponding to the area A, is associated with traveltimes going only
through the top velocity layer. The branch corresponding to the area B is associated
with traveltimes traversing both velocity layers. The branch corresponding to the
area (' are head waves, propagating through the first velocity layer and the gray area
which represents a transition layer between the two velocity horizons.

The DMO operator constructed by raytracing at 90 degrees from the isochrone,
has contributions from each branch of the isochrone. The dashed lines in Figure 0.4,
represent the zero-offset rays. The traveltimes along the rays give the time correction
for the MZO operator, while their intersection with the surface gives the spatial
correction.

The zero-offset rays corresponding to branch A in Figure 0.4 contribute to the
branch A of the MZO operator in Figure 0.5. In the same way, the branch B in
Figure 0.4, is mapped on the MZO operator in the area B. The triplications of the
MZO operator in the area (' are due to the head waves that are contoured by the
branch C on the isochrone in Figure 0.4.

0.1.3 The new MZO method

Central to this thesis is a new equation for MZO, that 1 derive analytically from the
double square root equation by extracting the zero-offset migration operator. The
new phase-shift formulation for MZO is expressed as:
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MZ0 impulse response

po(to, ky) = /dkh/dw e ? [\/(I_Y) e ]p(w,kyakh). (0.1)
where I used the customary notations
k k
H=""andy = U—y,
2w 2w

and p(w, k,, kn, z = 0) is the 3-D Fourier transform of the field p(¢, y, h, z = 0) recorded
at the surface, using Claerbout’s (1985) sign convention:

plw, ky, kp,z =0) = /dt ei‘“t/dy e_ikyy/dh e Fnhp(t,y, b,z = 0).

The field po(to, k) represents the zero-offset data in time and in common-midpoint
wavenumber coordinates.

Equation (0.1) represents a novel form of migration to zero-offset. It is analytically
derived from the wave equation, and therefore it treats correctly the kinematics of
the DMO+4+NMO operator and is consistent in amplitude with the double square
root (DSR) equation. It is similar in form to the DSR equation, since the complex
exponential operator has the sum of two square roots in its phase. However, downward
continuation is performed in time in the case of the MZO operator, not in depth as
with DSR migration. This difference suggests the use of a time-varying velocity,
which could be more convenient since the v(z,t) velocity is information obtained
from surface data and requires fewer assumptions about structure.

Another application in which MZO has potential advantages over full prestack
migration is velocity estimation. The velocity function assumed for applying MZO
influences the alignment in time of the reflections over offset but not their absolute
position. In contrast, the choice of the migration velocity influences the absolute
position of the reflections (Fowler, 1988).



Because migration to zero-offset can be used to focus the image without knowing
the complete velocity structure, anisotropy can be also included in the focusing step
(Dellinger and Muir, 1988). Additionally, the focusing analysis can be used to get a
better time interval velocity estimation. Equation (0.1) is velocity dependent and the
velocity can be used as a parameter for focusing analysis over different offsets, not
only for zero-offset. Such an analysis will implicitly handle the anisotropic velocity
variations and the depth structure velocity since it is performed in time and not in

depth.

Equation (0.1) also provides a link between the wave-equation and “true ampli-
tude” DMO formulations. Chapter 2 shows that the DMO formulation extracted
analytically from the DSR prestack migration equation coincides kinematically to
the standard DMO algorithms. However, from an amplitude point of view, DMO
extracted from the DSR equation without any approximations, does not correspond
to the generally accepted definitions of “true amplitude” DMO (Black et al.,1993;
Bleistein 1990). This observation can be used for deriving a new DSR formulation
for prestack migration to better handle the migration amplitudes.

To summarize, my motivation for examining the variable-velocity migration-to-
zero-offset imaging method is manyfold. A better understanding of the wave-equation
nature of the MZO through the DSR formulation. A formal derivation of DMO and
MZO from the wave equation. The surprising difference between the MZO kinematics
and the NMO plus DMO kinematics and the inability of the various corrections to
standard DMO to handle operator multi-branching. The real data challenge presented
to DMO algorithms in areas with strong velocity gradients.

0.2 Background and history of DMO processing

Since its introduction in the late seventies, the dip moveout correction has become a
standard processing step in seismic data imaging. Migration to zero offset processing
is a generalization of the DMO process. As this thesis will prove, MZO has all the
advantages of DMO processing and is more accurate. Among the many advantages of
the DMO step, perhaps the greatest, is its robustness. It requires few parameters and
almost always improves the output section. Moreover, applying a succession of DMO,
NMO, stacking, and zero-offset migration can replace the more expensive sequence of
prestack migration for each offset and stacking. However, the migration to zero-offset
is not the only improvement that DMO delivers to the seismic section. Ideally, DMO
processing enhances the data in numerous ways stated best in the following list by

Deregowski (1986), to which Hale (1991) added item 11:

1. Migrate each trace to zero offset so that each common-offset section becomes
identical to a zero-offset section.

2. This in turn implies that post DMO, but prestack, common-midpoint gathers
contain the reflections from common depth points as defined by normal inci-
dence rays. That is, reflector point dispersal for nonzero offset traces is removed.



3. Cross line ties are improved because a zero-offset trace is the same regardless
of the direction of the offsets from which it is derived.

4. Dead traces are interpolated according to local time dips without those dips
having to be estimated by a separate operation.

5. Coherent noise with impossibly steep dip is removed, without the artificial align-
ments often associated with dip filters. At the same time steeply dipping fault
planes are better imaged alongside horizons with smaller dips.

6. The signal-to-noise ratio is improved, especially at high offsets.

7. Stacking velocities become independent of dip so that correct stacking of simul-
taneous events with conflicting dips is made possible.

8. Velocity analysis is improved and provides velocities that are more appropriate
for migration as well as stacking.

9. Diffractions are preserved through the stacking process so as to give improved
definition of discontinuities after post-stack migration.

10. Post-stack migration becomes equivalent to prestack time migration, but at
considerably less expense.

11. (Hale) Amplitude versus offset studies are more meaningful after DMO be-
cause reflections in a common-midpoint gather have common specular reflection
points.

These advantages justify the wide application of DMO processing in the last decade.

Historically, DMO was first presented at the 48th SEG Meeting in San Francisco
by Judson et al. (1978), who called their process DEVILISH (dipping event velocity
inequalities licked). Though little detail was given about the actual implementation,
DEVILISH used a finite-difference operator to perform a dip-limited DMO correction.

Yilmaz and Claerbout (1980) proposed a processing sequence called prestack par-
tial migration (PSPM) that represents the difference between the migration before
stacking and the conventional data processing scheme of NMO correction, stacking,
and zero-offset migration. The basis of their paper is Yilmaz’s thesis (1979), which
also has a very elegant mathematical derivation of the double-square root (DSR)
prestack migration equation, derived directly from the wave equation.

Deregowski and Rocca (1981) proposed an integral formulation for DMO process-
ing by considering the impulse response of the DMO+NMO operator as a transfor-
mation from constant offset to zero offset, using raytracing arguments. This opened
the way for the development of a flexible DMO method: DMO as an integral (Kirch-
hoff) method. It correctly determines the kinematics of the impulse response, though
the amplitude of the operator continues to be an area of research on which different
schools of thought have not reached agreement.



Hale (1983) proposed a method for performing DMO processing by Fourier trans-
form that is accurate for all dips and offsets in constant velocity and also derived
extensions of DMO processing to approximate slow velocity variations with depth. In
the third chapter of his thesis, Hale laid the foundations for analytically deriving the
DMO from the DSR prestack migration equation. These foundations served as the
starting point for the work this thesis presents.

Jakubowicz (1984) proposed an efficient version of DMO by Fourier transform by
decomposing the data into a discrete number of dips that are each processed with
their own dip-dependent stacking velocity. The dips are then added together after
dip filtering so that each dip contributes only once to the final CMP stack. Moreover,
Meinardus and Schleicher (1991) showed how his method can be used in 3-D depth-
variable velocity media by changing the NMO velocities with the azimuth of the
source-receiver configuration.

Biondi and Ronen (1987) proposed an algorithm to perform DMO in shot profiles
by multiplying the data in the Fourier domain by a time- and space-invariant shot-
DMO operator. These conventional DMO operators are kinematically correct when
velocity is constant and approximately correct when velocity increases linearly with
depth (Hale, 1983), but they cannot be applied when velocity varies laterally and
depth prestack migration is required to image the structure.

When velocity varies rapidly with depth or varies laterally, DMO processing fails
(Black et al., 1985). The direct solution to these problems is full migration before
stacking. However, this process is computationally expensive because it requires a
much greater volume of data to be migrated than post-stack migration. There ex-
ist approximations to the DMO algorithms for slow increase of velocity with depth
(Deregowski and Rocca, 1981; Hale, 1983; Popovici, 1990; Hale and Artley, 1993; Art-
ley, 1992). However, for fast velocity gradients, velocity that decreases with depth,
or laterally varying velocity, the present DMO algorithms fail to provide an accurate
solution to the zero-offset transformation problem. Jakubowicz (1990) notes that
“When the problems encountered in CMP stacking are primarily due to lateral veloc-
ity variations, there is at present, alas, no alternative to applying some form of depth
migration before stack.” The new MZO algorithm developed in this thesis addresses
precisely this issue.

Migration to zero-offset (MZO) combined with zero-offset migration could be a
faster alternative to prestack migration. Until recently, though, MZO theory was only
developed for constant velocity media with some approximations regarding the depth-
variable velocity case (Meinardus and Schleicher, 1992; Hale and Artley, 1992). So
far, accurate depth MZO algorithms have been more expensive than actual prestack
depth migration (Popovici, 1990; Artley, 1992) and therefore are rarely used. The new
MZO0 algorithm this thesis proposes works not only for depth variable velocity media
but also for laterally variable velocity media, and is faster than prestack migration.



10

0.3 Fundamentals of DMO kinematics

The following sections are a tutorial intended as an introduction to the fundamentals
of DMO processing, discussing first the kinematics of DMO and second the first-
order amplitude theory of DMO by Fourier methods. Readers familiar with the basic
concepts of DMO can skip directly to the next chapter, which presents the theory of
MZO processing.

0.3.1 The need for DMO processing

The need for dip-moveout processing arose because of the problem of stacking traces
that share the same common midpoint (CMP). Figure 0.6 shows the geometry of a
CMP section over a flat layer. In a CMP section, traces are sorted so they share the
same midpoint for different locations of the source and receiver. In this configuration,
when only flat layers are present, the reflections come from a single point situated

under the CMP.

SRC CMP REC
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Figure 0.6: Geometry of a
CMP gather over a flat layer.
| intro-CMPgeonodips | [NR]
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Figure 0.7: Geometry of a
CMP gather over a dipping layer.
| intro-CMPgeodips | [N

Figure 0.7 depicts the geometry of a CMP section over a dipping layer. In this
case the reflections do not come from the same point, but move updip as the offset
between source and receiver increases.

CMP stacking assumes that reflections come from horizontal layers. Under this
assumption, the normal-moveout correction flattens the hyperbolas in a CMP gather
to horizontal lines. After NMO, traces belonging to the same CMP are summed
together (stacked) to enhance the reflected signal and attenuate the noise.
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Problems appear when multiple dipping events occur in a section. Figure 0.8a
combines the geometry in Figures 0.6 and 0.7 for multiple CMPs. Each hyperbola
corresponds to a CMP section over a dipping layer and a flat layer. The third axis
(CMP axis) was suppressed by projecting the hyperbolas of different CMP sections
into a single plane. As the CMP moves updip, the hyperbolas corresponding to the
dipping layer appear closer to the surface, while the ones corresponding to the flat
layer are unchanged.

A dipping reflector in a CMP section (see Figure 0.8a) produces a reflection hyper-
bola as the next section proves. The NMO velocity necessary to flatten the hyperbolas
originating from reflections on the dipping layer is higher than the real velocity.

Figure 0.8a shows several CMP gathers containing reflections from a dipping layer
and a horizontal layer. After NMO with the real velocity, the hyperbolas correspond-
ing to the flat layer become straight lines (Figure 0.8b). After stacking (Figure 0.8¢),
the horizontal event is preserved at the expense of the dipping event.
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a. CMP gathers b. CMP gathers after NMO c. CMP after stacking
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Figure 0.8: Effect of CMP stacking with real velocity on dipping reflectors.
a. Several CMP gathers for a flat layer and a dipping layer. The third axis (CMP)
is suppressed by projecting all gathers into one.
b. The CMP gathers after NMO with medium velocity (v,eq); the hyperbolas from
the horizontal event are flattened.
c. Traces after stacking for the same CMP. [intro-CMPnmoEx1] [ER]
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a. CMP gathers b. CMP gathers after NMO c. CMP after stacking
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Figure 0.9: Effect of CMP stacking with velocity (vumo = vyear/cos @) on horizontal
reflectors.

a. Several CMP gathers for a flat layer and a dipping layer. The third axis (CMP)
is suppressed by projecting all gathers into one.

b. The CMP gathers after NMO with higher velocity; the hyperbolas from the dipping
event are flattened.

c. Traces after stacking for the same CMP. [intro-CMPnmoEx2] [ER]
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Figure 0.9a shows the same CMP gathers as in Figure 0.8a but the NMO veloc-
ity used to flatten the hyperbolas from the dipping reflector is higher than the real
medium velocity. In Figure 0.9b NMO is performed with the higher velocity nec-
essary to flatten the hyperbolas corresponding to the dipping event. After stacking
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(Figure 0.9¢), the dipping event is preserved at the expense of the horizontal layer.
It is obvious that the NMO correction with a single velocity, combined with CMP
stacking, acts as a dip filter. The result is a degradation of the final image when
conflicting dips are present.

0.3.2 The NMO velocity

Figure 0.10 shows a dipping reflector and the position of the source, geophone, and
CMP. The common-offset traveltime from the source at point A to the receiver at
point B is represented by the sum of the segments AR and RB. The zero-offset
traveltime from the CMP to the reflector and back is given by the segment FG. The
dipping reflector serves as the axis of symmetry for the figure.

SRC CMP REC

A F B

2 2 2
AC = AE + EC

AE = FG

Figure 0.10: Dipping reflector in a constant velocity medium. The dipping angle is
f. The raypath from the source to the receiver is represented by the segments AR
and RB. The zero-offset raypath is equal to the segment FG. [NR]

For the geometry in Figure 0.10, we have

AC = AR + RB = vly,

where v is the velocity of the medium, and ?; is the shot-receiver traveltime. The
segment FG (which has the length of the zero-offset raypath) is equal to the segment
AE, as can be seen from Figure 0.10 and the trapezoid ABCD:

FG = (AD + BC)/2 = BC + ED = AE.

In the triangle AAEC, using Pitagora’s identity we can write the relations
FG’ = AE? = AC? — EC? = (vt3)? — (2hcos §)?, (0.2)
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where 6 is the angle of the dipping reflector, and 2h is the distance between source and
receiver. Finally, dividing the segments with the velocity, we obtain the zero-offset
traveltime from the CMP to the reflector:

2 2
t?):ti— (those) :ti— ( 2h ) . (0.3)

v vnmo

We can easily see that in equation (0.3) the expression for ¢, is a hyperbola, with
the top at {op. The NMO velocity necessary to flatten the hyperbola for a dipping

reflector is ;

(0.4)

Unmo = .
cos 6

Since the cosine function is always smaller than or equal to one, the NMO velocity
Unmo Necessary for the best stacking is greater than or equal to the medium velocity.

0.3.3 Extending NMO to DMO

The dip-moveout correction is in fact an extension of the normal moveout correction
used when dips are present. In the presence of only horizontal layers, NMO tries to
correct the effect of the offset and transform all the common-offset sections into zero-
offset sections. The DMO+NMO correction does exactly the same thing not only
for horizontal events but also for dipping events. DMO is an intermediate processing
step that attempts to position the conflicting dips in the correct zero-offset location
such that, after NMO and DMO, CMP stacking will not attenuate crossing events.

So far, these concepts have all been formulated for a constant-velocity medium.
For a variable-velocity medium, the transformation from common-offset to zero-offset
performed by NMO combined with DMO cannot be split into two separate pro-
cesses; instead, it forms a single-step process called migration to zero-offset (MZO).

In constant-velocity media, MZ0 = DMO - NMO.

To define the parameters involved in the DMO correction, we need to analyze the
kinematics of the common-offset reflection of a dipping layer. For a horizontal layer,
the reflection point is situated right under the location of the common midpoint
(CMP). For the dipping layer sketched in Figure 0.11, the reflection point for the
source-receiver ray is R. This point is positioned updip relative to the intersection O
of the zero-offset ray from the common-midpoint F with the dipping reflector.

In a common-offset section, the trace corresponding to a source positioned at
point A and a receiver positioned at point B is placed in the location of the CMP.
However, in a zero-offset experiment, the reflection point R is observed from the
surface position J. Migration to zero-offset (DMO - NMO) is the transformation
that relocates a reflection point in a common-offset section to a corresponding place
in a zero-offset section.

In order to define the DMO operator, we must calculate the time correction and
the surface coordinate correction that transform a common-offset section into a zero-
offset section. In Figure 0.11 the segment JR represents the zero-offset ray from the
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Figure 0.11: DMO kinematics: dipping reflector in a constant velocity medium.

The dipping angle is . The raypath from the source to the receiver is represented
by the segments AR and RB. The reflection point R in the case of a zero-offset
experiment that is situated at the surface point J. The zero-offset raypath from J is

equal to the segment JK. The incidence angle at R is ¢. INR]

reflection point R. The segment FJ represents the surface correction from the CMP
to the real zero-offset position of both the source and the receiver. We can calculate
the surface correction and the traveltime correction using some elementary geometry.

The source-receiver traveltime t;, corresponds to the ray path ARB. The velocity
of the medium is v, and the common-offset traveltime is

(AR + RB)

h— .
v

The segment AB represents the offset between the source and receiver, and we define
the variable h as half the distance between the source and the receiver:

AB

p4

AF =FB = h.

The segment AC is equal to AR +RB, and therefore AC = vt},.

In Figure 0.11, we can relate the angle of the dipping reflector and the incidence
angle of the common-offset raypath through the segment EC, as follows

EC = 2hcos § = vty sinze, (0.5)

where 6 is the dipping angle of the reflector, and 7 is the incident angle of the common-
offset raypath at the reflection point R. Squaring equation (0.5) and replacing the
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sine by the equivalent cosine expression yields the following equation for the cosine
of the incidence angle:

1
cosi = —\/(vth)2 — (2h cos 0)2.

’Uth

To obtain the length of the segment zo = FJ, which is the DMO surface correction,
we must first note that the length of the segment FJ is related to the length of the

segment OR by the relation
OR

Tog = ——
cosf’

and further that the segment OR in the triangle ORM is given by the simple trigono-
metric relation

OR = MO tanz:.

The segment MIN= 2MO is calculated as half the difference between the bases of
the trapezoid ABCD as follows:

_ MN AD-BC
2 4

MO

= hsin 4. (0.6)

Finally using the three previous relationships we can get the length of the surface
correction g as a function of the dip angle, half-offset, medium velocity, and travel-
time:
OR tan i tan ¢ 2h? sin 0
z0 = = MO— = hsinf—— = = . (0.7)
cos 0 cos 0 cos \/(vth)2 — (2hcos §)?

The zero-offset traveltime represented by the segment JK is given in the trapezoid

FJKG by the equation
JK = FG — 2FJsin 4, (0.8)

where we know the length of the segment g = FJ from equation (0.7), and the length
of the other segment FG from equation (0.2):

FG = \/(vth)2 — (2h cos 9)2.

Substituting the expressions of FG and FJ into equation (0.8) and dividing by the
medium velocity, we can calculate the zero-offset travel time as follows:

JK (vip)? — (2h)?
to= — = . 0.9
v v\/(vth)2 — (2h cos 0)? (0:9)

Thus, if we group together equations (0.7) and (0.9), the parametric equations
defining the MZ0O = DMO - NMQO operator in constant velocity media become



17

(0.10)

The formulas in equation (0.10) tell us where an event from a common-offset
section is moved in a zero-offset section when the dip is known. However, as the next
section shows, we do not have to know the dip angle to apply the DMO operator
correctly. Figure 0.12 shows the variation of ¢y and ¢ for a whole range of dips. For
a zero dip, we have

z9 =10

which is precisely the NMO correction.

DMO correction for all dips

° |
Figure 0.12: Distribution of the gz
DMO correction for all dips °
(_Tﬂ- S 0 S %) |intr0—MZOimpulse| @;—
[ER]

(

78‘00 74‘00 0 460 860
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0.3.4 How DMO processing works

The goal of the MZO (DMO-NMO) processing step is to transform a common-offset
section into a zero-offset section. We can conceive of any structure (or depth model)
as composed of independent diffractors. This is the commonplace assumption for
Kirchhoff migration. By summing the contributions from all the diffractors we can
obtain a common-offset section. Following this hypothesis, it is interesting to examine
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the behavior of a single diffraction curve in a common-offset section. Figure 0.13
shows a common-offset diffraction curve together with a zero-offset diffraction curve
that is actually a hyperbola. The aim of the DM O - NMO step is to transform the

common-oflset into the zero-offset curve.

S
[av]
©
o~
3
. 8
Figure 0.13: Zero-offset hyperbola j\;
and the common-offset diffraction O
[ER] 3
.

T T T T T T
0 400 800 1200 1600 2000 2400
CMP (m)

Figure 0.14 shows the kinematics of the DMO - N MO operator; each point along
the common-offset diffraction curve is spread along an operator similar to the one
shown in Figure 0.12 that uses equation (0.10). The result of this operation appears
on the right side of Figure 0.14. The artifacts at the top of the figure result from the
constant amplitude assigned along the DMO curve. In reality, the amplitude along
the DMO curve is tapered toward the end of the operator.

For a better understanding of DMO kinematic properties, the reader may find it
amusing to solve the two geometry problems that follow.

Problem 1.

Demonstrate that for the geometry presented in Figure 0.11 the following equality
is true:

AD JK
FG BC’

Problem 2.

For the geometry presented in Figure 0.11, and using equation (0.6), show that
the reflection point displacement measured along the reflector is

2

OR = 2sinf cos b, (0.11)

vtcmp

where 1., is the traveltime from the CMP location (point F) to the reflector and
back (or the segment FG in time units), and v is the medium velocity. The length of
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Figure 0.14: The transformation of a common-offset diffraction curve to a zero-offset
hyperbola by DMO - NMO.

a. DMO - NMO kinematics. Each point on the common-offset diffraction curve is
shifted with the NMO correction and spread along the DMO curve.

b. The result of applying DM O-N MO to the common-offset hyperbola. The artifacts
result from using a constant amplitude along the DMO curve. [ER]
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the segment FG is given in equation (0.2). Equation (0.11) appears in Levin’s (1971)
classic paper, and is also the first equation Hale uses when explaining DMO in his
Society of Exploration Geophysicists course notes.

0.4 DMO by Fourier transform

Until now we have examined only the kinematics of the DMO and NMO operators.
The amplitudes of the DMO operator are gracefully handled by a new type of dip-
moveout processing: DMO by Fourier transform, introduced in the next section. Even
though the first definition of DMO by Fourier transform also uses only kinematic
arguments, Chapter 2 shows that the amplitude of the operator is very close to the
one obtained analytically from the wave equation.

0.4.1 2-D Fourier transforms of dipping events

In order to understand how DMO by Fourier transform works, we have to examine
some properties of the 2-D Fourier transform. It is particularly important that all
events with a particular slope in the time-space domain are mapped to a single radial
line (a line passing through the origin) in the frequency-wavenumber domain. In
other words a segment with slope ﬁ—; is mapped in Fourier domain in a segment with

ky
slope 2.

A two-dimensional function representing a segment of constant amplitude in a
zero-offset section can be described by

t—1o

H{(y)o( ;

_y)v

where
H(y)=1; y€[a,b
H(y) =0; ye& (—o0,a)U(b,o0),

t and y are the zero-offset coordinates, #g is the intersection point on the time axis,
and the value p is the tangent of the slope

; At
=tana = —.
p Ay
In the corresponding depth model, p becomes
At 2sind
p - Ay - v 9

as Figure 0.15 shows. The angle # represents the slope of the reflector in the depth

model, and v is the velocity of the medium. The function 5(% — y) has unitary
t—to

amplitude when the argument is zero or y = >



21

AY

~

T~

At

T

'

Figure 0.15: Dipping-bed geometry in a common-

offset section and the corresponding

constant velocity depth model. In a zero-offset section, the slope of the reflection is
At/Ay = 2sin /v, where 6 is the dipping angle in the depth model, and v is the

velocity. [NR]
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Figure 0.16: The effect of 2-D Fourier transform
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on events with same dip.

a. Several reflectors with the same dip in space-time coordinates.
b. The 2-D Fourier transform of the same section. All the events are mapped on a

radial line. [intro-FFT2Ddips| [ER]
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The Fourier transform of a finite segment differs from that of an infinitely long
segment only in the amplitude term. This is to be expected since we actually multiply
the infinite segment by a boxcar filter, which in the Fourier domain means convolve
it with a sync function. The 2-D Fourier transform of an infinite segment is

: : t—1
S(w, k) = /dt e“"t/dy e R ( ; 0 —y)

. L t—tg
= /dt ewle™thy

ckyto k
= eZkT(S(w — —y),
p

which in the w, k, space represents a line with slope

ky _dt_ZSin(?

w TTay T

. (0.12)

Figure 0.16.a shows several dipping segments with the same slope that, after the
Fourier transformation, are all mapped to a radial line in w, k, space, as displayed in

Figure 0.16.b.

0.4.2 Hale’s DMO

Given the geometry in Figure 0.17, as proved in the preceding section,

2hcos O\’
tﬁ:t%—( o8 ) : (0.13)

v

where tg is the traveltime from the CMP to the reflector and back, ¢, is the source-
receiver traveltime, 2h is the distance between source and receiver, and v is the
velocity of the medium. In this situation the reflection point R in the nonzero-offset
case differs from the actual reflection point S in the zero-offset case.

Hale (1984) uses equation (0.13) to write

4h? N 4h2%sin% 0

e=1 — — SR (0.14)
where the NMO corrected time is
4h?
=1y — —- (0.15)
v
Substituting ¢, in equation (0.14), we have
4h?sin? 0
12=1>+ — (0.16)

(%
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Figure 0.17: Geometry for a dipping reflector in a constant velocity medium. The
reflection point for the nonzero-offset ray R is different from the zero-offset reflection

point S. The dipping angle is 6. [NR]

Let us consider a pressure field p(ts,y, h) recorded as a function of nonzero-offset
time ¢5, midpoint y, and offset . In a common-offset section we set the variable h to
a constant value, which gives us a 2-D field p(t4,y; h = ho). For all the values of the
offset h, we have a 3-D field p(ts,y; h). We define a new field p,(t,,y, k) as

h2

4
pn(tnayv h) = p( t% + ?7y7 h)7 (017)

replacing the value of the common-offset traveltime ¢, in p(tn,y, k) by its expression
in equation (0.15):

4h?

Note that for a constant value of h this transformation amounts to shifting a value
in a trace from tj to %,.

Next we define another field po(to,y, k) as

4h2sin? 6
po(tm% h) = pn(\/t?) - T7y7 h)7 (018)

by replacing the value of the NMO-corrected traveltime ¢, in p,(t,,y,h) with its
expression in equation (0.16). Equation (0.18) is dip-dependent because it contains
the variable sin 8. So far the new field po(to, y, 2 ) is unknown; further computations are
needed to determine it. However, equation (0.18) formally represents a mapping from
an NMO-corrected field to a DMO-corrected field. It is important to keep in mind
that in this formulation the nonzero-offset reflection point R does not correspond to
the zero-offset reflection point S.
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Thus the only variable in equation (0.18) that we cannot easily determine is sin 6,
so we need to find a transformation to express sin  as a function of the other variables.
In a zero-offset section

UAtO
2Ay’

as shown in Figure 0.15. However, in equation (0.12) we proved that for a dipping seg-
ment we have a relationship between sin # and the ratio of the midpoint wavenumber

sin @ =

and frequency:

dty  ky, 2sinf

. (0.19)

@ N Wo v
Now we need to Fourier transform the pressure field py(fo,y, k) to take advantage of
the new variables k, and w used in equation (0.19) as follows:

Po(wo, by, h) = /t dto / dyei @t =k o (10 h). (0.20)
0 Yy

We can now use the mapping defined in equation (0.18) to replace po(to,y, k) in
equation (0.20) with p,(t,,y, k). Changing the variable of integration requires calcu-
lating the Jacobian of the transformation (0.16). Rewriting the zero-offset time from

equation (0.16) as
L2
to = [t + h?2—,
“o

and derivating with respect to t¢,, provides the Jacobian

dt tn
n 12 4 b2

We can now rewrite equation (0.20) as

(0.22)

th i(w()’ }t%+h2z—§—k9y)
Po(wO,ky7h) :/t dtn/ydy\/j]@pn(tnay7h)e 0 ,
" 12 4+ h2

which is Hale’s DMO by Fourier transform.

0.4.3 Zhang’s improved DMO

Zhang (1988) observed that in Hale’s DMO, the reflection point in the nonzero-offset
case does not coincide with the reflection point in the zero-offset case. He has derived
a new formula for DMO that takes into account not only a time correction but also
a midpoint correction. Zhang’s derivation of the new DMO correction introduces
a different Jacobian for the DMO operator. In other words, the kinematics of the
operator are identical, but the amplitude along the operator differs. Zhang starts by
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examining the time and midpoint corrections obtained in section 0.2.3. The DMO -
NMO correction in constant velocity media, from equation (0.10), is

2h?% sin 6
o —ared

12 4h2

Ayo =

h v2
to - 2 cos? f
\/th — 4h2v—2

We can isolate the NMO transformation, which is only a time-shift,

4h?

and write for the DMO operator
2h?sin 6
Yo=Y — o
v\/12 + 4h* 5"
t2

(12 + 4p2En?

In equation (0.23) the y axis increases to the left, and the angles are positive if they
dip toward the right and negative if they dip toward the left. In Figure 0.18 the angle
6 is negative, which can also be derived from equation (0.19), as follows:

(0.23)

t():

dtg  2sinf

dyo v

where the sign of dyy determines the sign of the angle.

The next steps define another field po(to, yo, k) by extending Hale’s reasoning to
the case in which not only the time variable but also the common-midpoint variable is
changed. The common-midpoint change accounts for the fact that the DMO transfor-
mation defined by Zhang moves the nonzero-offset reflection point to a zero-offset re-
flection point. Stacking after this transformation produces true common-depth-point
gathers. In the transformation Hale defined, the reflection point for the nonzero-offset
is different from that in the zero-offset case.

After introducing the two new variables in the zero-offset field and renaming the
zero-offset time and midpoint coordinates ¢ and yg, the Fourier transform of the new

field 1s
Po(wO, kyo, h) = / dto/ dyo ei(WOtO_kyOyO)po(to, Yo, h) (024)

to Yo

We then replace the variables ¢y and yo in equation (0.24) with the known variables
t, and y. Fortunately, it is not necessary to express explicitly ¢, = ¢,({o,y0) and
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SRC CMP REC

Figure 0.18: Geometry for a dipping reflector in a constant velocity medium. The
reflection point for the nonzero-offset ray R is the same as the one for the zero-offset

ray JR. The dipping angle is 6. [NR]

y = y(to, yo), though we assume the respective dependencies. Differentiating equation
(0.23), we find the differentials of the new variables

dyo = dy

Lo (12 + 8R2EE0) (0.25)
dt = n n . 2U2 3 n

ENCERTESE

and introduce them into equation (0.24). Using the equality (0.19) we replace the

expression
2sind k
with the equivalent expression —2.

v o

The phase becomes
q) = uJoto — kyo Yo
L2 h*k
= wo = — by (y — =

——— )
2 2
Jr4ns wor[12 + 228

kQ
= o t72’L + h2i§ - kyoyv
“o

which is the same phase as in Hale’s equation (0.22).

Equation (0.24) then becomes

Lo (12 + QhQiLS) i(wo t%+h2ii§—ky0y)
Po(wo, kyy s h) :/t dtn/ydy n ) )Og p(ta,y, h)e 0 . (0.26)
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Comparison of equation (0.26) with Hale’s equation (0.22) shows that they only differ
in the amplitude term. The two Jacobians are

— tn
Jg = —

k
2 2 Y0
thth? =5
0

and
2

k
a2 )
JZ - kf, Oé
(B2 22)2
0

The ratio between the Jacobians is

J 12 —I—QhQ@
Ty _ b2

. 0.27
JH t? _I_ thyg ( )

0.4.4 MZO by Fourier transform

Both Hale and Zhang separate the NMO correction from the DMO correction. How-
ever, for variable velocity media we cannot do this. Rather, in order to generalize the
DMO - NMO operation, we have to use the migration to zero-offset (MZO) concept.
The next chapter treats this subject in detail, but here, for the sake of consistency, I
include the simple case of MZO by Fourier transform. The Fourier transform expres-
sion is simply obtained by using equation (0.23) without separating the NMO step,
as follows:

2h?% sin 0
Yo=Y — .
N ETTr
(0.28)
1 — A
to == h v? .
\/ti — AR gp2sinie
The differentials of the new variables are
dyo = dy
2
ta(12 — 4 4 9p2 5 (0.29)
dto = b2 52 03 dth,
(8 = +h22)?
and by replacing the variables yo and o in equation (0.24), we obtain
k2
th(t3 — %2 + QhQ%) i(wo ti—%+h2ii§—kyoy)
0

Po(wo, kym h) - /th dth /y dy (t2 4h2 + hzkgo )Oé p(th’y’ h) €
R 2 w2 )

(0.30)
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Note that replacing the quantity

in equation (0.30) with ¢2 gives us the same phase as the one obtained by Hale and
Zhang, but the Jacobian differs from Zhang’s Jacobian by a factor of

Ju 4h2
7 n o\ (0-31)

n

which corresponds to the Jacobian of the NMO transformation.



