Chapter 1

MZO in variable velocity media

To check the accuracy of the MZO in variable velocity media presented in chapters 1
and 2, in this chapter I introduce a new, independent method to obtain the impulse
response of the MZO operator. This separate method is based on the decomposition
of the migration-to-zero-offset operator into prestack migration followed by zero-offset
modeling (Deregowski and Rocca, 1981; Deregowski, 1985), and uses a fast algorithm
to compute the traveltime maps necessary for modeling wave propagation in a general
2-D medium (Van Trier and Symes, 1990). The next section compares the kinematics
of the impulse responses generated with each method and shows that in depth variable
velocity the two operators are extremely similar.

1.1 A second method for computing MZO kine-
matics in variable velocity media

An alternate algorithm for computing the impulse response of MZO using finite-
difference traveltime maps is based on the principle that MZO is the combination
of two processes: full prestack migration and zero-offset modeling. In a constant
velocity medium, this definition allows for an analytical formulation of the MZO
kinematic operator that is identical with the DMO after NMO formulation (Popovici
and Biondi, 1989). The algorithm used to investigate the MZO operator in variable
velocity media follows the definition of the MZ0O method and can be divided in two
parts (Deregowski and Rocca, 1981; Popovici 1990):

o Constructing the full prestack migration depth model. The depth model repre-
sents the position in space of all points that can generate a given impulse in a
constant-offset section. For a constant velocity medium this step is equivalent
to constructing the migration ellipse. For a variable velocity medium, the loci
of points with equal traveltime from source to receiver form a curve resembling
an ellipse or a superposition of several ellipses.



o Zero-offset modeling. Given the depth model, we raytrace back at 90 degrees
from the reflector, to model the zero-offset data. The intersection of the ray with
the surface gives the z-coordinate of the MZO operator, while the traveltime
along the raypath provides the zero-offset time-coordinate.

Considering the MZO process as the combination of full prestack migration fol-
lowed by zero-offset modeling, the MZO impulse response can be computed using
finite-difference traveltime maps (Popovici, 1991). The traveltime algorithm (Van
Trier and Symes, 1990), is based on solving the acoustic wave equation in the high-
frequency approximation (with the eikonal equation). The velocity model used for
MZO0 has only a depth variation, though the traveltime algorithm can handle lateral
velocity variation as well. The velocity is assumed to be a continuous function of
depth. For media where velocity is not a linear function of depth, the MZ0O impulse
response may have serious variations from the constant velocity case, and triplications
can occur in the normally ellipse-shaped MZO impulse response (Popovici, 1990).

1.1.1 Two adjoint MZO operators

Spreading data along the MZO impulse response is identical to summing along a
adjoint curve. For zero-offset migration in a constant velocity medium, this statement
is equivalent to saying that spreading the data over circles produces a result identical
to summing along hyperbolas. From a computational point of view, the spreading
operator (an ellipse for DMO, a circle for constant velocity migration) is called a
PUT operator, meaning that the operator takes a time sample and puts it in all the
adjacent traces. The adjoint summation operator (a hyperbola for constant velocity
migration) is called aGET operator because it gets the input from the adjacent traces.

By using finite-difference traveltime maps, the GET and PUT operators can be
calculated in similar ways, beginning with the same six steps:

1. Given a velocity model v(z, z), compute a traveltime map for the source.

2. Compute a traveltime map with the source in the receiver location, given the
same velocity model.

3. Sum the two traveltime maps. Thus, in each location of the grid we have the
sum of the traveltime from source to receiver T,,(z, z).

4. The gradient of the constant-offset traveltime field T,,(z, z) is a vector that has
the same direction as the zero-offset ray. In other words, the vector perpen-
dicular to a constant-offset isochrone bisects the angle between the ray coming
from the source and the one returning to the receiver. Find the ray direction
for the zero-offset case for each grid point, by calculating the gradient of the
constant-offset traveltime map in each point of the grid.



5. Using the gradient table, compute for each grid location the surface coordinate
of the zero-offset Xy(x, z), which is equivalent to finding the intersection of the
surface with the zero-offset ray.

6. Using the gradient table, compute for each grid location the zero-offset travel-
time Ty(x, z) along each zero-offset ray.

Thus far, the algorithm is identical for the two adjoint operators. At this point, the
three tables generated using the same velocity model are;

Teo(z,z), the constant-offset traveltime field.
Xo(z,z), the zero-offset surface coordinate field.
To(x,z), the zero-offset time field.

The PUT operator is obtained by associating each value of T.,(z,z) with a pair
of coordinates (To(z,2), Xo(z, z)). In other words, for a given value of the constant-
offset traveltime, we find an isochrone t;, = T,,(xp,2;) of coordinates (xp,z;) and
the values of the Xy(zy,2,) and To(zp, 2;) associated with that curve. The GET
operator can be defined similarly, by associating each value of Ty(z, z) with a pair of
coordinates (T..(z,2), Xo(x,2)). In other words, for a given value of the zero-offset
time field, we find an isochrone to = To(xo, z0) of coordinates (zq, zo) and the values
of the Xo(zo, z0) and T.,(xo, z0) associated with that curve.

1.2 MZO impulse response in variable velocity
media

I applied the MZO operator to a series of depth-variable velocity models. Figure 1.2
shows in the left panel the constant-offset traveltimes map corresponding to the ve-
locity model in the right panel. The velocity has a jump from 2000 m/s to 4000
m/s. Figure 1.3 shows the corresponding impulse response of the MZO phase-shift
operator. The kinematics of the MZO operator obtained using traveltime maps is
plotted on top of the seismic section, as isolated dots. The two main branches of the
operator coincide, but the traveltime MZO operator also contains triplications due to
overturned rays. The phase-shift MZO in my implementation does not handle diving
rays. Figure 1.1 explains schematically the kinematic origin of the main branches of
the MZO operator.

Figure 1.1 shows the kinematics of the traveltimes in a constant-offset section and
a step function interval velocity profile. The velocity model is similar to the one
described by Hawkins (1994) for the Central Graben area in the North Sea. The
thick line in Figure 1.1 represents the right half of an isochrone in the constant-offset
traveltime map, corresponding to an impulse at 1.1 seconds and a half offset of 500
m. The isochrone describes the location of all the possible reflection surfaces in the
depth model that could generate an impulse response at 1.1 seconds for the given half



offset of 500 meters. In other words is represents the result of applying full prestack
depth migration to an impulse situated at 1.1 seconds. It is also the first step needed

to build the MZO operator.

There are three sections along the isochrone, that can be separated from a kine-
matic point of view. The branch in Figure 1.1, corresponding to the area A, is
associated with traveltimes going only through the top velocity layer. The branch
corresponding to the area B is associated with traveltimes traversing both velocity
layers. The branch corresponding to the area C'are head waves, propagating through
the first velocity layer and the gray area which represents a transition layer between
the two velocity horizons.

The second step in building the MZO operator is zero-offset modeling. This step
is accomplished by raytracing back from the isochrone, the rays being perpendicular
to the isochrone. The dashed lines in Figure 1.1, represent the zero-offset rays. The
traveltimes along the rays give the time correction for the MZ0O operator, while their
intersection with the surface give the spatial correction. The zero-offset rays corre-
sponding to branch A in Figure 1.1 contribute to the branch A of the MZO operator
in Figure 1.3. In the same way, the branch B in Figure 1.1, is mapped on the MZO
operator in the area B. The triplications of the MZO operator in the area (' are due
to the head waves that are contoured by the branch C'on the isochrone in Figure 1.1.
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The isochrone that generates the MZO impulse response in the first

velocity model. The isochrone corresponds to the prestack migration kinematics of

Figure 1.1:

| chapter3-DepthSurface | [NR]

an impulse at 1.1 seconds and a half offset of 580 m. The dashed lines represent the

zero-offset rays.
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Figure 1.2: Constant-offset traveltime map and the corresponding velocity model.
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Figure 1.3: The MZO kinematics using traveltime maps superimposed on phase-shift
MZ0 kinematics. The branch A corresponds to rays traveling in the upper velocity
layer, while the branch B corresponds to rays traveling through both velocity layers.
The triplications in branch (' are due to the transition zone. [chapters-C3f2phase] [CR]
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Figure 1.4: Constant-offset traveltime map and the corresponding velocity model.
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Figure 1.5: Comparison of MZO impulse responses.

The MZO kinematics of the impulse response obtained using traveltime maps is su-
perimposed on the impulse response of the integral MZO. [CR]
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Figure 1.6: Constant-offset traveltime map and the corresponding velocity model.
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Figure 1.7: Comparison of MZO impulse responses.

The MZO kinematics of the impulse response obtained using traveltime maps is su-
perimposed on the impulse response of the integral MZO. [CR]

1.2.1 MZO applied to synthetic data

I applied the MZO phase-shift operator to a simple synthetic model containing three
dipping reflectors in a depth-variable velocity medium. The dip of the reflectors is
30, 45 and 60 degrees. Figure 1.8 shows in the left panel the zero-offset section,



in the middle panel the farther common-offset section and in the right panel the
interval velocity model. The velocity model has two distinct velocity layers, 1500
m/s and 3000 m/s, separated at a depth of 1000 m. The maximum offset used was
3250 meters (hpq: = 1625). Figure 1.9 shows the stacked data, the left panel after
NMO and DMO, the right panel after MZO. Surprisingly, NMO and DMO do a
good job at stacking the dipping reflectors in the second velocity layer. The events
stack even better after MZO, especially at higher dips, though MZO in depth variable
velocity is a second order correction. The phase-shift MZO algorithm also filters some
steep dipping events, because the frequency domain implementation has an existence
condition that limits the dip range with velocity.

Figures 1.10 and 1.11 show several CMP gathers through the original, NMO cor-
rected, NMO and DMO corrected, and finally MZO corrected data. As expected,
NMO overcorrects the data, and DMO undercorrects the diffractions, but surpris-
ingly it has the opposite effect on the dipping reflectors. The events sloping upward
are dipping reflectors while the events sloping downward are diffraction hyperbola
branches. For this particular velocity model, a simple squeezing modification to the
DMO algorithm that does not take into account the multiple branching of the oper-
ator could degrade the stacked image. In Figure 1.11 the MZO corrected data shows
that there is a better event alignment for the farther offsets, but for the close offsets

NMO followed by DMO offer a very good stacking solution.
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Figure 1.8: Three dipping reflectors in a zero-offset section, last offset section and the

interval velocity model.

a. Zero-offset section.

b. Highest offset common-offset section.

c. Interval velocity model. [chapters-difiszoLamig| [ER]

(s) aury,
4
Eg
(s) sy,
4

-~ -~

I
[} 1000 2000 3000 4000 5000 6000 o] 1000

a. CMP location (m)

Figure 1.9: Stacked sections after DMO and MZO.
a. NMO and DMO corrected data, stacked.
b. MZO and stack. |cha.pter3—djffsynDMst| [ER]
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Figure 1.10: Comparison between original input data and NMO corrected data.

a. Several input CMP gathers.
b. CMP gathers after NMO. |chapter3—diffsanNcmp5| [ER]
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Figure 1.11: Comparison between DMO and MZO.
a. deveral CMP gathers after NMO and DMO.
b. CMP gathers after MZO. |chapter3—diffsynDMcmp5| [CR]

1.3 Handling the lateral velocity variations

The DSR prestack migration equation, though defined for depth variable velocity,
can be used to image media with strong velocity variations using a phase-shift plus
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interpolation (PSPI) or split-step correction. The split-step method is based on ap-
plying a phase-shift correction to the extrapolated wavefield, correction that attempts
to compensate for the lateral velocity variations. Since the equations for DSR and
MZO are extremely similar, I show first how to extend DSR prestack migration to
lateral velocity media and exemplify the method by applying the new algorithm to the
Marmousi dataset. The same method is then used to extend MZO to media lateral
velocity variations. The results are not satisfactory and therefore a second approach
is proposed for MZO in v(z,z) showing much better results. The second approach
is based on using NMO to correct for lateral velocity variations, inverse NMO with
a laterally invariant velocity, and MZO using the same laterally invariant velocity
to convert the common-offset sections to zero-offset. This approach shows better
imaging for the Marmousi dataset than the standard sequence of NMO followed by
DMO.

1.3.1 Split-step prestack migration

From Chapter 1, I rewrite the two basic definitions for zero-offset and prestack phase-
shift migration, as a starting point for further demonstrations. The prestack migration
equation (??) was formulated as

Pt =0k h=0.2) = [do [ by eorhbdplio by b,z = 0),

where p(w, k,, kn,z = 0) is the 3-D Fourier transform of the field p(t,y,h,z = 0)
recorded at the surface.

The zero-offset migration (??) was formulated as
p(t=0,ky,2) = /dwo eikz(w(),ky)zp(wm ky,z=0)

where p(wo, ky,z = 0) is the 2-D Fourier transform of the field p(¢,y,z = 0). The
phase k.,(w, ky, kz) in the prestack migration case, and k,(wo, k,) in the zero-offset
migration case, are defined as

. w? 1 w? 1
kzp(w, by, k) = —sign(w) [ — gkt R)? A+ \/v_2 = o (ky = k)’ ]
. w2 k2
k. (wo, ky) = —2sign(wp) v—g — Zy

For zero-offset migration, the idea of a split-step correction appeared first in
Gazdag and Sguazzero’s (1984) PSPI algorithm, but it did not become a standalone
technique until Stoffa et al. (1990) reversed the order of the algorithm, permitting the
correction to be applied only once. The schematic flow of the two algorithms is shown
in FiguAl“e 1.12, and the split-step correction is represented by the box containing the
e =327 term.
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Figure 1.12: The two Fourier migration algorithms.

a) Phase Shift Plus Interpolation (PSPI).

b) Split-step Fourier Migration. [NR]

Gazdag and Sguazzero (1984) implement a technique in the PSPI algorithm to
ensure that all the zero dips (corresponding to the case k, = 0) are downward contin-
ued without distortion. The technique consists of multiplying the wavefield P(z, z,w)
with the phase-shift correction factor

e—i—v(:z)Az
prior to the Fourier transformation along the X axis. The downward extrapolation
phase incorporates another correction factor
1L Az
e
where the subscript v; denotes one of the constant velocities used in the downward

extrapolation step. When the velocity varies only in depth v(z), the two terms cancel
each other. When the reflectors are flat (k, = 0), the extrapolation term becomes

. 2
6_“ / :—2—k§AZ - e_i%AZ

and is cancelled by the multiplication with the phase-shift correction factor

1L Az
e 1 .

As a result, the zero-dip reflections are downward continued with the correct laterally
varying phase-shift

Az

N W
e ‘vz
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The same result can be obtained via the Stoffa et al. (1990) algorithm, where the
phase-correction term is contained in a single term, as follows:
6i(#_—v(;,z))WAz‘
The difference is that the downward extrapolation is done with a single velocity and
the perturbation slowness phase shift is performed after the downward extrapolation
step.

For prestack migration, the two square roots in the phase term represent specif-
ically the extrapolation term for the source and for the receiver. In other words if
we downward extrapolate first the source, and second the receiver, we need in each
case a different phase-correction term. The phase-correction term includes a laterally
varying velocity function, v,(z,z) for the geophone-field continuation and v,(z, z)
for the source-field continuation. A minor problem arises in the fact that the DSR
prestack migration equation (??) is defined in midpoint and offset coordinates, while
the velocity is defined in shot and geophone coordinates. We can easily go from one
system to another using the transformation relations (??) defined in Chapter 1. The
split-step correction term becomes

. 1
el(m_ vg(ws,z)  vglzg,2) Jwiz

where =, and z, are the shot and geophone surface coordinates. In midpoint-offset
coordinates the split-step correction term becomes

3 1
e om ~ R T warm @A

In other words, for each midpoint y, use the velocity located at y — h (the source
location) and the velocity located at y + h (the receiver location). A diagram of the
prestack migration split-step algorithm is represented in Figure 1.13. The last box
represents the multiplication with the split-step correction exponential term, where
the slowness difference As is defined as

2 1 1

As(y, h,z) = — — _ ,
S(y’ ’Z) Um, U(y—h,Z) v(y—l—h,z)

The DSR split-step migration algorithm was applied to the Marmousi data, a
well known prestack synthetic dataset generated by the Institut Francais du Pétrole.
The Marmousi dataset is based on a real geologic model from the Cuanza basin
in Angola (Bourgeois et al, 1991). The geological model of the basin consists of a
deltaic sediment interval deposited upon a saliferous evaporitic series. The sediments
are affected by normal growth faults caused by the salt creep. Under the salt there
is a folded carbonate sedimentation series forming a structural hydrocarbon trap.
The challenge presented to the exploration geophysicists it to image the hydrocarbon
trap. The complex velocity model, with strong lateral velocity variations, is shown in
Figure 1.14a. Figure 1.14b shows the near-offset section with a half-offset A = 100m.
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Figure 1.13: DSR split-step prestack migration algorithm. |[chapters-Dsrsplit] [NR]

e

Figure 1.15a shows the result of zero-offset split-step migration applied to the
near-offset section. The near full offset is 200 meters (h=100 m). Applying a zero-
offset algorithm to a non-zero offset section obviously introduces errors in the imag-
ing results, and the target area is poorly imaged. In comparison, the DSR split-step
prestack migration algorithm produces an excellent image of the hydrocarbon trap,
shown in Figure 1.15b. These encouraging results suggested that a split-step correc-
tion applied to the depth variable MZO algorithm could provide a viable extension
to v(z, 2).
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1.3.2 Extending MZO to laterally varying velocity media

Continuing the parallel between the DSR equation (??) and the MZO equation (?7?),
the split-step correction can be applied to the migration to zero-offset algorithm in the
same way as it was applied to the DSR prestack migration equation. The split-step
phase-correction term includes a laterally varying velocity function, v,(x,t) for the
geophone-field continuation and v,(x,t) for the source-field continuation. To correct
for the fact that the MZO equation (??) is defined in midpoint and offset coordinates
while the velocity is defined in shot and geophone coordinates, we can easily go from
one system to another using the transformation relations (??) defined in Chapter 1.
The split-step correction term becomes

2 1

1
el(m_ vg(ws,t)  vglzg,t) Jwit

where =, and z, are the shot and geophone surface coordinates. In midpoint-offset
coordinates the split-step correction term becomes

¢/~ it~ w1 AT

In other words, for each midpoint y, use the velocity located at y — h (the source
location) and the velocity located at y + h (the receiver location). Unfortunately, the
results obtained applying the split-step correction to MZO show that while there are
some promising aspects to this approach, the split step correction presented here has
to be improved further.

The upper part of the stacked section is better defined in the MZO-split-step
algorithm than the NMO and stack section shown in Figure 1.17b or the NMO, DMO
and stacked section shown in Figure 1.18a. The lower part though, is stacked to the
wrong location , and therefore after zero-offset split-step migration the basement is
imaged in the wrong location. I conclude that the split-step phase-shift correction
I used for MZO 1is lacking an extra term, that would account for the correct event
positioning.

Another approach to tackle the lateral velocity variation is to use the standard
NMO to handle the first order lateral velocity variation, and MZO to handle the
second order depth variable dip correction. The processing sequence is comprised of
three steps:

e NMO with a laterally varying V,,.s(z,1).
e Inverse NMO with an average depth varying velocity Vi,ms(t).

e MZO using the interval velocity from the preceding step.

As can be seen in Figures 1.18 and 1.19 this second method produces better results
than the standard NMO followed by DMO processing sequence. The top boundary
of the anticlinal structure around 2000 m is better defined, the bottom of the salt
at about 2500 m has better continuity, the target structure is better imaged, and in
general the image is better focused after MZO.
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Figure 1.14: Marmousi velocity model and near-offset section.
a. Marmousi velocity model.
b. Near-offset section (h=100 m). [chapters-marmVelandNO | [ER]
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a. Zero—offset split-step migration, (near—offset h=100 m)
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Figure 1.15: Zero-offset and prestack migration of the Marmousi.
a. Zero-offset migration of the near-offset section.
b. Prestack migration using DSR with a split-step term. [chapters-ZoandDsRsplit| [CR]
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a. MZ0—split-step, stacked
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Figure 1.16: Stacked data after MZO-split-step, and the migrated image.

a. MZO-split-step stacked data.

b. Zero-offset  split-step  migration applied to the stacked data.
| chapter3-marmMZOFF Tsplit | [CR]
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1.3.3 Application to seismic data

It MZO offers some improvements to media with lateral velocity variations, it is a
second-order correction to depth-only velocity variation media like the Gulf of Mexico.
Figure ??7 compares the stacked sections of a Gulf of Mexico dataset. The common-
midpoint spacing is 25 m, and the maximum offset is 3200 m.

Figures 77 and ?? display the zero-offset migrated data. The areas were MZO is
expected to perform better than the standard sequence of NMO followed by DMO are
the zones with fast velocity variations, near the salt boundaries. The right flank of
the salt dome is imaged better after MZO, and so is the are the sediments on the right
side of the salt dome. There is better reflector continuity and a better definition of the
reflectors resulting in a crisper, better focused image after MZ0. These improvements
can be seen better in Figure 7?7, which is just a magnification of the upper right part
of Figure ?7.

Overall, I conclude that since MZO is a second order improvement in depth vari-
able velocity, in most area of the Gulf of Mexico, the industry standard processing
sequence of stacking after NMO and DMO will provide an adequate image. MZO
offers modest improvements to data in mild depth velocity variations media, though
I expect better results in strong depth velocity variations or lateral velocity varia-
tions. Hawkins (1994) also confirms the fact that NMO and DMO is an appropriate
processing sequence even in the North Sea Central Graben area, were conventional
processing performed better than expected. For laterally varying media the velocity
dependent MZO becomes a first order correction, but further work is needed to define
an operator that produces identical results to prestack migration.
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Figure 1.17: The stacking velocity and the stacked data after NMO.
a. Stacking velocity.
b. NMO with best stacking velocity and stacking. [chapters-VstackandNMOst| [ER]
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Figure 1.18: Stacked data after DMO and MZO.
a. NMO with best stacking velocity, DMO and stacking.
b. NMO with best stacking velocity, INMO with average v(t), MZO with v(¢) and

stacking. |chapter3—DMOandMZOst| [CR]
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Figure 1.19: Zero-offset migration of the Marmousi data using the stacking velocity
for NMO.

a. NMO with best stacking velocity, DMO, stacking, and split-step zero-offset migra-
tion.

b. NMO with best stacking velocity, INMO, MZO, stacking, and split-step zero-offset
migration. |chapter3—DMOandMZOmig| [CR]
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a. NMO, DMO and stack
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Figure 1.20: Comparison between DMO and MZO stacked data.

Gulf of Mexico data after NMO, DMO, and stacking.

Gulf of Mexico data after NMO with the laterally varying stacking velocity, inverse
NMO with a laterally invariant velocity, MZO using the same laterally invariant
velocity, and stacking. |chapters-Guitzost | [CR]
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a. NMO, DMO, stack and split—step migration
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Figure 1.21: Comparison between DMO and MZO stacked and migrated data.

a. Gulf of Mexico data after NMO, DMO, stacking and split-step migration.

b. Gulf of Mexico data after NMO with the laterally varying stacking velocity, inverse
NMO with a laterally invariant velocity, MZO using the same laterally invariant
velocity, stacking and split-step migration. [chapters-GuitMzOmig| [CR]
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Figure 1.22: Comparison between DMO and MZO stacked and migrated data, detail
area.

a. Data after NMO, DMO, stacking and split-step migration.

b. Data after NMO with the laterally varying stacking velocity, inverse NMO with a
laterally invariant velocity, MZO using the same laterally invariant velocity, stacking
and split-step migration. |chapters-GuiMZOmigeut | [CR]




