





Chapter 1

Offset separation

The MZO operator presented in the preceding chapter can be formulated to allow for
separate migration of each common-offset section. Several issues have to be taken into
account for an optimal implementation of MZO in common-offset sections. Among
the most important is the introduction of artifactsg in the offset domain. A second
issue is how to speed up the algorithm using a stationary-phase approximation to
the inner kernel. The MZO form in equation (??) is similar to the DSR equation,
and the implementation for separate common-offset sections is analogous for the two
algorithms. An accurate implementation for DSR is discussed in Popovici (1993), and
the same techniques can be applied to eliminate artifacts in the MZO algorithm. At
the end of this chapter, I also present analytical formulations for applying the DMO
operator both after and before the normal-moveout correction (NMO).

1.1 Offset separation

The phase-shift formulation of the MZO presented in the preceding chapter in equa-
tion (?7) is

po(lo, ky) = /dkh/dw e [\/(I_Y)2_H2+\/(1+Y)2_H2]P(w,kyakh).

Let us consider as an input to the MZO process a 3-D cube p(t,y, h) where all the
common-offset sections are zero except a single 2-D common-offset section puo(t, y; ho),
corresponding to a half-offset hy. The result is equivalent to introducing a Dirac 6
function in offset coordinates. The first step is to Fourier transform the p(¢,y,h)
field in time and midpoint coordinates. Next, Fourier transforming over the offset

dimension yields

—ikpho

p(kayvkh) =€ pho(w7ky;h0)7

where the scaling factor for the Fourier transform, though omitted, is understood.
Substituting the wavefield p(w, ky, k) in equation (??), we can write the phase-shift



MZO as

po(to, ky; ho) = /dw/dkh emiwolwhyhn)to e=iknto p(iy s ho)
(1.1)
= [ do plw, ks ho) [ diy e olebenlt =it

where wo(w, ky, k) is the phase-shift term defined in equation (?7),

w
wo =3 [\/(1—Y)2—H2+\/(1+Y)2—H2] .
Equation (1.1) can be used to migrate to zero-offset individual common-offset sections,
as shown in Figure 1.1.

a. Common—offset section b. Zero—offset section after MZO
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Figure 1.1: Single common-offset section and the output of MZO.
a. Common-offset section.
b. Zero-offset section obtained by applying MZO to the common-offset section.
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The speed of the algorithm is determined by the method used to compute the
kernel

CMP (m) CMP (m)

I(w, ky; o, o) = / dhy, e~ i0(wikykn)to=iknho (1.2)

Methods for fast evaluation of the stationary phase in equation (1.2) are discussed in
Appendix 2.A.

Expression (1.1) also demonstrates the facts that separate common-offset sections
can be migrated individually to zero-offset, and that there is no condition which
requires all of them to be present in the 3-D prestack migration input data. When we
process all the common-offset sections at the same time, the data field after Fourier
transform along the offset axis becomes

plwsky o) = [ dh e p(w by, B),



which, when introduced into the MZO equation (??) allows for isolating the stacking
step, which is the integration in the offset variable h:

polto k) = / dw / dhy, €™ i@ ky bn)to / dh e~ (o, k., b)
(1.3)

Without the stacking step, the migration to zero-offset for individual common-
offset sections becomes

pollo, by, h) = / dw p(w, ky, b) / dhy, =0 (ikyskn)to=iknh (1.4)

It should be noted here that the integration boundaries for the integral in kj are not
infinite, and, moreover, do not correspond to the Nyquist values =% and - in the
discrete case, but are given by the condition that the phase wg be real. The problem
is similar to that encountered in the prestack migration of individual common-offset
sections (Popovici, 1993). As in the case of the DSR equation, using the wrong
integration boundaries introduces artifacts into the MZO algorithm.

1.1.1 MZO artifacts

The DSR equation has the same form as the MZO equation. A comparison of the two
integral equations reveals the mathematical similarities and suggests solutions for a
better implementation of MZO. The DSR prestack migration equation has the form

Pt =0ky =02 = [dhy [doe VTR e = 0),

while the MZ0O equation 1s

p(t07 klﬁ h — 072 = 0) = /dkh/dﬁ,{) 6_% |:\/(1_Y)2_H2+\/(1+Y)2_H2:| 7p(u)7 ky7 kh)Z — 0)

Both equations perform an integration in &k, and w, and both have a double-square-
root phase. Moreover, each square root contains the difference between two squared
amounts.

An argument commonly used to explain the artifacts in DSR migration is that they
are caused by Fourier domain wraparound along the offset axis. I have found that the
artifacts can be minimized by varying the sampling along the offset-wavenumber axis,
while respecting the existence boundaries required by the double-square-root phase.



Figure 1.2a shows the output of constant sampling in £, DSR migration applied to
a data cube (¢,y, h) containing a single spike in a common-offset section with a half-
offset hg = 190m. The shallower ellipse is an artifact. In contrast, the improved
DSR migration in Figure 1.2b eliminated the shallow ellipse artifact. However, in a
stacked section such artifacts are greatly attenuated because of the summing in offset
that is implicitly done with the DSR equation. When each common-offset section is
taken separately, as in common-reflection-point or AVO studies, the artifacts are a
disturbing presence.

km km

(o] 200 400 600 800 1000 1200 o 200 400 800 800 1000 1200

00¥
00¥

298
pER

008
008

0027

0027

a. Simple DSR migration b. DSR with variable sampling in kh

Figure 1.2: Output of DSR in offset-midpoint migration. The input cube contains a
single spike for the common-offset section h = 190m.
a. DSR migration with constant kj sampling. The shallower ellipse is an artifact.

b. DSR migration without offset artifacts. [CR]

The source of artifacts in DSR migration relates to equation (??), which limits the
interval of existence for the variable kj,. Normally the offset wavenumber £;, is evenly
sampled between the values (—Z-, =) in the DSR equation (??), which is necessary to
perform the FFT along the offset axis. However, the requirement that the square-root
expressions be real limits the available values for kj,.

A similar condition can be defined for the interval of existence of the variable
kp in the MZO phase (??), which must be real. This in turn requires that the two

conditions
lw—v, | = |vn|

|wtoy [ > [on]

be satisfied simultaneously, where v;, and v, are defined as



By examining all four possible sign cases for the given values of w and v,, represented
in Figure 1.3, we can reduce the two conditions to a single condition:

I N = K (1.5)

The shaded area in Figure 1.3 represents the interval of existence for the variable vy,
for each pair (w,v,).
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A straightforward implementation of the MZO equation (1.4) produces significant
artifacts. When, from the whole set of discrete values, only a subset of the values of
ky 1s used, artifacts appear in the phase expression. The integration in £y is in fact
an inverse Fourier transform along the offset axis, followed by extraction of the zero
values in the offset variable. The inverse Fourier transform takes into account not
only the domain of existence of the value k; given by equation (1.5), but the whole
domain of definition between the Nyquist values of k;,
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The region of integration can be much smaller than the domain in which kj; is sam-
pled. As a result, only several discrete values of kj; are used to evaluate the inverse
Fourier integral. The missing offset-wavenumbers set the value of the phase to zero
for the discrete values of k; that do not satisfy equation (1.5). The inverse Fourier

transformation of the exponential shows very different results, as illustrated in Fig-
ure 1.4.

A careless implementation of the migration to zero-offset equation (1.4) will pro-
duce artifacts similar to the ones in the DSR migration with constant k; sampling.
Figure 1.5a shows the output of MZO applied to a data cube (¢,y,h) containing a
single spike in a common-offset section with a half-offset 2y = 500m. In Figure 1.5b,
the artifacts are reduced by using variable sampling for ky.
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Figure 1.4: Comparison of the DSR phase defined between Nyquist values and be-
tween the more restrictive existence boundaries.

a. Phase and the inverse Fourier transform of the exponential, between Nyquist val-
ues.

b. Phase and the inverse Fourier transform of the exponential, in the strict existence
interval. The values are the same as in the left figure, but sampled in the exact

existence interval. [NR]
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a. MZO, constant kh sampling b. MZO, variable kh sampling

Figure 1.5: Output of MZO applied to an input cube containing a single spike in a
separate common-offset section. The half offset used is h = 500m.
a. MZO using constant sampling in k,. The deeper event is an artifact.

b. MZO using variable sampling in kj;. Offset artifacts are reduced.
[CR]



1.1.2 MZO code structure

The basic migration to zero-offset algorithm which implements equation (??), and
used to generate Figure 1.1b, can be summarized in pseudocode as

FFT along all axes p(t,y,h) — P(w,ky, kp)
do t0
do £k,
do w
do kh
if (abs(Qabs( ) — abs(k,)) > abs(kz)) then
P(w, ky, ki) = P(w, ky, ky)e™twodt0
M(tO k ) (t ) y) (kayvkh>
endif

In order to perform an FFT along the offset axis, we must evenly sample the variable
ky, between the Nyquist negative and positive values. However, the existence condition
for k;, in equation (1.5) restricts the domain of definition for the variable k. For each
pair of values w, k,, the loop in k; will use either a subset or all of the possible &,
sampled values.

The MZO algorithm can be rewritten, extracting the multiplication with the wave-
field P(w, ky, h) outside the kj, loop, as shown in equation (1.4). The new algorithm
keeps the phase separate from the data field:

for any h
FFT along ¢,y axes p(t,y; h) — P(w, k)
for all w, ky, knph(w, ky, k) = e~ "kt
do 10
do k,
do w
do kh
ph(w, ky, k) = ph(w, ky, ky,)e~ =00
phase(w, k) = phase(w, ky) + ph(w, ky, k)
M(t0,k,) = M(t0,k,) + P(w, k,) * phase(w, k)

The loop in k, becomes a mere numerical integration of the exponential term, an
integral that can be asymptotically approximated through the use of the stationary
phase as explained in Appendix 2.A. Moreover, to minimize the artifacts in the offset
domain, the variable kj is sampled differently for each pair of values (w,k,). The
interval of existence (1.5) for each pair (w,k,) is divided by the total number of &y,
variables.
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For depth-variable velocity, we have to sum the phase terms corresponding to each
time dt0 level. The summation in time is done for individual values of the variable
kn. In other words, for depth-variable velocity, the exponential term contains the
integral over time t0 of the phases corresponding to previous depth levels, separated
for each value of k,. Because we need to know the integral in time for each value of
ki, we cannot simply store the global value of the stationary phase approximation
for each time increment. Knowing the stationary phase for a time level is not enough
to carry the computation to the next time level, though it could produce a good
approximation (Biondo and Palacharla, 1994).

The result is a slow migration to zero-offset algorithm that migrates one common-
offset section in almost the time necessary to migrate all common-offset sections.
However, finding a good stationary phase approximation to the integral (1.2) can
speed up the algorithm hundreds of times. The resulting algorithm can be expressed
in pseudocode as

for any h
FFT along ¢,y axes p(t,y; h) — P(w,k,)
do 10

do £k,

do w

compute phase fast

M(z,ky;h) = M(z,ky; h) + P(w, ky) * phase

In Appendix 2.A, I discuss different properties of the phase function and how the
stationary phase can be computed numerically, together with the approximations
needed for depth-variable velocity.

1.2 Geometric interpretation of the stationary phase
condition

A better understanding of the physical meaning of wave-equation derived integrals
can be achieved by examining the geometrical interpretation of the stationary point
condition. Equations (??) and (1.1) have a raypath representation that can be de-
rived from the stationary point condition. The MZO geometrical interpretation is
closely related to the DSR geometrical interpretation. I present first the geometri-
cal condition for the prestack migration DSR equation and second the geometrical

condition for MZO.
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1.2.1 Geometrical condition for DSR

Given the plane wave represented schematically on the left in Figure 1.6, where ~ is
the angle of the plane wave at the surface and also the vertical angle of the takeoff
ray, in the depth model we have the relation

A
siny = Ay
For the same At and Ay in the time section we have
At sin 7y
— =tanf = .
Ay o v
Depth section Time section
N Y Y
s
AY
¢ -2} At
~
o~ ~
plane wave
T

Y

Figure 1.6: Plane wave in depth and time. [chapter2-planewave] [NR]

Another useful relation is the equation that relates the dip in a time section with

the ratio of the Fourier coordinates. A segment of plane wave with slope ﬁ—; is mapped

in Fourier domain by a line with slope %’:

Atk 2sin 7y
— 1.
Ay (1.6)

-
w v
where 7 is the takeoff angle (measured from vertical). These relations will be used in

analyzing the geometrical meaning of the stationary phase in prestack DSR migration,

and MZO.
The DSR prestack migration equation has the form

p(t=0,k,,h=0,z2) = /dkh/dw e*p(w, ky, kn, 2z = 0), (1.7)
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where the phase k,(w, ky, k1) was defined in the dispersion relation (??) to be

. w? 1 w? 1
ko (w, ky, k) = —sign(w) [\/ﬁ — Z(ky + k)% + \/ﬁ — Z(ky — k)2 ] )

Substituting the explicit form of the Fourier transform over offset

pleos by o) = [ dh e plo, iy, b).

in equation (1.7), and eliminating the stacking step, the prestack migration equation
can be written as

Pl =0,k h,2) = /dw plw, by, h)/dkh ik bn)z=iknh (1.8)

The phase of the exponential in this case is

B(ky,) = —sign(w)z [ \/j—j — i(ky + k)2 + \/(:_22 - i(ky k)2 ] —kah,  (1.9)

and in order to evaluate the stationary point we need to find the roots of the equation

_ b+ by _ Fn — by ] =0. (1.10)
Vi =iy + k) % = — k)2

v

@' (kn) = —h + sign(w)z |:

To find the geometrical meaning of this equation, we need to transform the offset and
midpoint wavenumbers into shot and geophone wavenumbers, using the conversion
relations:

ky, = ky+ ks
kn = k,—ks.
Equation (1.10) becomes
vk, 1 vk, 1

[ |z = 2h, (1.11)

SRy @ 1Ry
or using the plane wave relation (1.6) and appropriate values for the angle signs, we
have a geometrical relation, as follows:

sin « sin (3

—— — Jz
V1 —sin’a \/1—sin2ﬁ

where the angles a and  are the takeoff angles at the source and receiver, as shown
in Figure 1.7.  The stationary phase condition reduces to the provision that the

[ = 2h

3

horizontal projection of the source ray plus the horizontal projection of the receiver
ray should be equal to the full offset:

ztana — ztan 8 = 2h.
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For depth variable velocity, the dispersion relation is the sum of terms calculated for
each depth interval:

Az |> tana; — Y tan 3;| = 2h, (1.12)

where the angles «; and j; are the vertical angles in each depth layer of the raypaths
from the source and receiver.

1.2.2 Geometrical condition for MZO

The stationary phase condition for MZO is found in Appendix 2.A, equation (1.40)
to be:

t 1 1
2sign(w)kh + = 2h.

2 JEZRF -8 JE R -H

Similar to the DSR geometric interpretation, the stationary condition can be con-
verted into a geometric relation by expressing the offset and midpoint wavenumbers
into shot and geophone wavenumbers and using the plane wave relation (1.6). The
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stationary phase condition for MZO is transformed as follows:

’L}Qtokh

2h = [ = 1 + - ! ]
do [\ = a4 By (2

vk, — k) vlo 1 N 1
N w 2 \/(2 _ v(kg;ks))z _ (v(kgw—ks))z \/(2 4 v(kgjks))z _ (v(kgw—ks))2
) . vig [ 1 1
= (sinf —sina)— +
( ) 4 _\/(1—sina)(1—sinﬂ) \/(1—|—sina)(1—|—sinﬂ):|

_ ‘ vio —\/(1—|—sina)(1—|—sinﬁ)—|—\/(l—sina)(l—sinﬂ)
N (SIH/B—SIHQ)T cos a cos f3 ’

(1.13)

Unfortunately, more trigonometry is needed to put expression (1.13) into a suitable
form. T couldn’t find a quicker way to arrive at the final result (1.14), so the reader
has to bear a little more. First I will prove that

b —a

2 cos

= \/(1 + sina)(1 + sin ) + \/(1 —sina)(1 — sin )

by using the equality
1+ sin 2u = (sinu £ cos u)®.

We have

\/(1 + sina)(1 + sin ) + \/(1 —sina)(l —sing) =

[ B B B
= (sin g + cos g)(sing + cos 5) + (sing — cos %)(sin'§ — cos 5)
— (cosﬂ;a—l—sinﬁ;a)—l—(cosﬂga —sinﬁ;a)
= 2cos p-a
2
Therefore the geometric condition in equation (1.13) is transformed as follows:
i 2 B=a
on = 0 (sin g — sina)&
4 cos a cos 3
vl . -« 0+« cosﬁ%a
= —2sin Cos
2 2 2  cosacosf3

vig B+ asin cosa — sin acos 3
8

2 2 cos a cos 3

?
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and choosing the appropriate signs for the angles we finally have:

vlg  fB+a
s

(tan a — tan 3) = 2h. (1.14)

Equation (1.14) represents the geometric condition for the MZO stationary phase.
It can be reduced to the condition of the DSR equation if we observe from Figure 1.8
that

t 1
%cosﬂ;a = z. (1.15)
The quantity % has the length of the segment XgR, and represents the zero-offset ray,

normal to the reflector. The angle ﬁ% is equal to the angle of the dipping reflector

0. From Figure 1.8 we extract the relations:

a = 0+
(1.16)
ﬁ = H_Zv

which can be also used to demonstrate equation (1.15).

2h

Zy

Figure 1.8: Geometric interpretation of the stationary phase condition for MZO.
| chapterZ—MZOstapgeom| [NR]

Equation (1.14) also provides a physical interpretation for the MZO operator. It
relates the source-receiver traveltime to the zero-offset traveltime, the offset and the
dip of the reflector. The zero-offset ray XoR bisects the source-receiver ray and forms
with each segment an incident angle ;. At the same time the incident angle is con-
strained by equation (1.16) that connects the source angle «, the receiver angle 3,
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and the dipping reflector angle §. The zero-offset ray therefore has to be perpendic-
ular to the dipping reflector, bisect the source-receiver traveltime and has the length
determined by the depth of the reflection point and the dip of the reflecting surface.

1.3 Separating the NMO and DMO corrections

For constant velocity we can further dissect the MZO equation (1.4) into DMO and
NMO. The problem that arises in separating the NMO and DMO operators is deciding
which order of separation is optimal. Applying the MZO operator directly to the
prestack data for a common-offset section with offset hy generates straightway the
zero-offset section

p(t,ky,h =0,2=0)=MZO - p(t,k,,h = ho,z = 0),

but in practice the common procedure is to apply NMO first, then DMO. The pro-
cedure can be refined by doing inverse NMO followed by a new NMO correction.
However, including this step does not illuminate the question of how to separate the
DMO and NMO steps from MZO. The problem we face is that the two operators
(NMO and DMO) do not commute, and thus it is necessary to define two different
types of DMO operators: DMO applied after NMO (the standard method) and DMO
applied before NMO (Gardner et al, 1986). Therefore MZO can be separated into
two DMO and NMO sequences:

e MZO = DMO - NMO, the usual DMO.
e MZO = NMO - DMO*.

To distinguish the two different DMO operators, the DMO before NMO operator is
thereafter written with an asterisk: DMO*. Before separating the DMO operator,
however, it is necessary to formally define an NMO operator.

1.3.1 The NMO and inverse NMO operators
An NMO operator can be defined as
pnmo(tn7ky7h) :p(t(tnah)vklmh)? (117)

where t, represents the NMO-corrected traveltime

4h?

”
,02

=1 -

and the field p(¢(¢,, h), ky, h) represents the remapping (shifting) of the original common-
offset field to the NMO-corrected field. This NMO formulation assumes spherical

divergence was applied to the data to compensate for geometric spreading. We can
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include the spherical divergence correction as an amplitude term in the NMO operator
which then becomes:

ool by B) = (1 (L 1), By ). (1.18)
The presence of the amplitude term has a physical justification. The amplitude of
the wavefield is higher at earlier traveltimes. In other words, the same event has a
greater amplitude in a zero-offset section than in a common-offset section. Because
the NMO times are smaller than the common-offset times, the amplitude of the field
should be increased proportionally. This scheme assumes that no amplitude gain
control or spherical divergence has been applied to the original wavefield. Otherwise,
the amplitude term can simply be ignored.

To obtain the NMO-corrected field in the frequency domain, we Fourier transform
the NMO equation (1.18) in time and change the integration variable from the NMO-
corrected time ¢, to the recording time ¢, as follows

Prmo(w, ky, h) = / dtn emnpnmo(tnv ky, )

twiy t
tw t2—% t2
= /dt [+ ﬁ@p(t kya h)7

v

noting that the change of variable eliminates the need to time-shift the prestack field
from ¢ to t,, a shift that is now performed by the exponential multiplication. The
Jacobian of the transformation t,, — ¢, from equation (1.18), is

dt, t
o]t

Conversely, the inverse NMO (INMO) can be defined as

ln
p(t, ky, h) = 7pnmo(tn(t7 k), ky, h), (1.20)

where
2,2
P=t4

In the Fourier domain, the INMO-corrected field becomes

ot
plw, by b)) = /dt ¢ oLt h), iy )
(1.21)

Twa /t%+£ ti
= /dtn € v? mpnmo(tm kya h)a
n U2
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where the Jacobian of the transformation ¢ — ¢, is
J = ﬂ — t_”
dt, L

Having defined the NMO and INMO operators, we can now use them to separate
DMO from MZO. The phase-shift formulation of the MZO from equation (1.4) is

polto, ky /dw p(w, by, ) /dkh Lsign(w) [\/(w—vy) —u2 4/ (wtvy) —uh]to—ihkh‘

The two possible cases-the usual DMO after NMO, and DMO* before NMO-are dis-

cussed in sections 2.3 and 2.4, respectively.

1.4 DMO after NMO

In the case of DMO after NMO, we need to identify the NMO operation inside the
MZO integral formula, since MZO is defined as

MZO = DMO - NMO,

and we can obtain the DMO operator from the general MZO equation (??). Starting
with the MZO relation (??) discussed in the preceding chapter, we can compare it
with the stationary-phase result obtained by Hale (1983). To bring equation (??) to
a form similar to Hale’s, a series of transformations is necessary. This section analyzes
them in detail. At the end, I arrive at a stationary-phase approximation that matches
Hale’s almost exactly, with the exception of a minor amplitude term that comes from
a different NMO Jacobian implementation.

Equation (??) has the form

paltosky) = [ty [ dw 7SO WVETR R

eliminating the integration in kp, which images the zero-offset, gives us

po(to, ky, kn) = /dw e_%Sign(w) {\/(w_uy) —vh V() _Uh]top(w,k‘y’kh).

This form suggests a Stolt formulation of the algorithm, replacing the exponential
phase with a new variable wg defined as in equation (?7?):

wo = %sign(w) [\/(w —vy)? — i+ \/(w +v,)% — vi]

In the Stolt form, the MZO equation without the inverse Fourier transform in wy

becomes p
w
pO(w07ky7kh) - ld—] p(w(w07ky7kh)7ky7kh>7 (122)

Wo
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where the field p(w(wo, ky, k1), ky, ki) is remapped (interpolated) from the constantly
sampled variable w to new values of w that depend on the variable wy. The remapping
w — w(wo, ky, kp,) is similar to the interpolation in Stolt migration. My interpolation
assumes that for each value of wy we can find the appropriate value of w, by applying
the inverse of relation (??7), or, in other words, that we can find the values of w for
regularly sampled values of wy.

To avoid the interpolation step, we can perform a slow Fourier transform in the
initial stage of transforming the prestack data field along the time dimension, and
map it directly onto the required wy values. This procedure is similar to Ottolini’s
(1982) derivation of the radial trace migration equation or to the transformations
needed to find a better Stolt interpolation algorithm in Popovici et al (1993). The
MZO equation (1.22) becomes

po(wo’ky’kh) = [dwol /dt iw(wo,ky,kp)t | (t ky7kh)

Lastly, to isolate separate common-offset sections, I employ the same technique used
to separate the offset in equation (1.3):

po(wo, ky) = /dkh [d%]/dt ieo(wo by kn)t /dh el (t, ky, h)

= [dn [t plt, kb [ di | S| et
/ p( » fys h [dwol )

and isolating the stacking step represented by the integration in A yields

o(wo, k /dtpt (t, Ky, h) /dkh l—] W(Wkayvkh)t—’ikhh7 (1.23)

d(.do

where the kernel in kj, can be computed using a stationary-phase approximation. The
algebra that describes all the necessary expansions appears in Appendix 2.B, with
the following final result:

1(t, ky, hywy) = /dkh [_] iw(wo,ky kp ) t—ikph

dCUO

/ 2 4h2 4 2y1 2 k2 (1'24)
27T(t )( WO —k )2 twoy [ 12— 4h +h2 +251gn(w0)g
€ .

\/w_o[t _ﬁ_l_hQ y]B

&

Equation (1.24) has the same phase as Hale’s DMO, or any other DMO defined
in Fourier domain, a result we expected since there is no controversy regarding the
kinematics of the different DMO operators in constant velocity media. On the other
hand the amplitude term is different from the familiar DMO amplitude formulations,
a result which is discussed in the following section.
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1.4.1 True amplitude processing?

Equation (1.24) represents an important result that warrants some comments. Since
the result was extracted directly from the wave-equation, without any approximations
except the stationary-phase solution, I expected to obtain the same Jacobian for the
DMO operator as the one obtained by Zhang(1988) and Black et al (1993). The
expression of the “true amplitude” DMO kernel in the Zhang (1988) or Black et al
(1993) formulation is:

k2 2
2 2 . k
tn(tn -I' 2h wiéj) 2wQ t%+h2 _y20

](tnykyvhv("JO) = k2 3 € o (125)
(12 + 0t

Equation (1.24) can be further transformed to bring it to a form more similar
to (1.25) by dismissing the /27 as it simplifies with the 1/v/27 omitted from the
Fourier transforms, and substituting ¢? — %2 by 2. This substitution actually brings
in another scaling factor as I will show in the next subsection, but that factor is not
relevant in this discussion. After these substitutions equation (1.24) can be written

12(40? _ 12y g ,/It%l+h2i
I(tn, ky, hywo) = WG y)E e (1.26)

k

Vo [+ 1]

as:

By comparing the expressions (1.25) and (1.26) we see that the differences are
irreconcilable, and that the “true amplitude” problem should be addressed at the
start, in the DSR equation. I conclude the DSR equation is not “true amplitude”
from a wave-equation point of view. I can only speculate on the reasons why there is
such a discrepancy, since the DSR prestack migration equation (?7?) is derived from
the constant-density constant-velocity wave equation and therefore there is no back-
scattered energy created while propagating the seismic wavefield with this equation.
Therefore, neglecting half of the wave field (the downgoing one) in the wave-equation
solution, doesn’t seem to be the source of conflict. It could also be that the imaging
condition of setting the time and offset equal to zero can be improved. Jim Black
suggested it is possible to work the analysis backwards, starting from the “true am-
plitude” form of the MZO or DMO equation and arrive at a DSR jacobian that will
provide a wave-equation amplitude consistent DSR migration. In other words modify
the downward continuation operator in the DSR migration equation by including a
new amplitude term W (w, k,, kp, z) as follows

p(t=0,k,,h=0,z2) = /dw/dkh W(w, ky, kp, 2) eikz(‘“’ky’kh)zp(w, ky, kn,z =0).
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1.4.2 The relation between MZO and Hale’s DMO

Comparing equation (1.24) with Hale’s stationary-phase approximation of DMO (equa-

tion 3.16a in Hale, 1983),
1 2
2wy [124+h% s disign(wo) T
) € o7 FiEn (o) (1.27)

3

V2ri2 (de k2
[t2+h2 y]

]H(tna k‘y, h, wo) ~

w ot

shows that they are essentially the same expression, a result we expected. The ex-
pression

in equation (1.27) has simply been replaced by the NMO-corrected time ¢2. However,
Hale considers the NMO-corrected field p,, (., ky, k) in his evaluation of the stationary-
phase approximation of the DMO kernel, and depending on the definition of NMO
used, slight differences may appear in the evaluation of equation (1.23). Hale’s DMO
stationary-phase approximation is

o(wo, k /dtnpn L beys ) T3 (1 ey By ), (1.28)

while the MZO stationary-phase approximation is

ofwo, k /dtptk RYI(L, by, By o). (1.29)

By transforming the variable of integration in equation (1.29) from ¢ to t,, and
]ty
dt,| t’

L,
po(wo, ky, h) = /dtnTp(t(tn,h),ky,h)l(tn,ky,h,wo), (1.30)

where the field p(t(t,, k), ky, h) is the original prestack data NMO-corrected. If the
NMO operator is defined without any Jacobian, we can stop here, and the only dif-
ference from Hale’s DMO is the factor tT” However, when we use the NMO definition
in equation (1.18)

using the Jacobian

we get

1
pnmo(tna kya h) = t_p(t(tn7 h)? kyv h)7

n

which is different from Hale’s

ln
pnmo(tna kya h) = TP(t(tru h)? kyv h)7

and the DMO stationary-phase approximation becomes

o(wo, k /dtn (b by, D)L (b iy, By o) (1.31)
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Hale’s DMO using a different Jacobian for the NMO cancels the Jacobian from the
transformation of the integration variable ({ — ¢,). The Jacobian used in equation
(1.18) is justified when no spherical divergence correction has been applied to the
data. (If spherical divergence has been applied, then the Jacobian loses its physical
sense, and the NMO transformation becomes just a time-shift, without any amplitude

correction. In this case, the DMO integral has just the tT" amplitude correction term.)
Therefore, the final DMO equation is

V2 (2l k2)3 wo [t +h? 4 i +isign(wo) T
w07 /dt”pnt 7ky7h) ( ) 6 o K

\/cTo(t3L+4h2)[t2+h2 y]%

(1.32)
The key amplitude term in equation (1.32) is:
WOQ 2y 1

The existence condition for the square root acts as a dip filter in the frequency-
wavenumber domain. This filter cuts out the evanescent energy, events with impos-
sible dip for a given velocity. While the effect of such events prevents noise with
impossible dip to enter the final image, it can be argued that when the velocity is
not known, some legitimate events could be filtered out. Hale’s DMO by Fourier
transform does not use the velocity cutoff filter, as equation (??) confirms. The left
panel in Figure 1.9 shows the impulse response of the DMO by Fourier transform.
In contrast to Hale’s DMO, the stationary-phase implementation of DMO given by
equation (1.32) illustrated by the middle panel in Figure 1.9, applies a velocity cutoff
to the evanescent events. However, if we omit the dip filter term (1.33) in equation
(1.32), we obtain the operator displayed in the right panel in Figure 1.9.

1.5 DMO before NMO
In the case of DMO* before NMO, the MZO operator is defined as
MZO = NMO - DMO~,

and the DMO™ operator can be obtained by isolating the NMO operator in equation
(1.23). Using the definition of the NMO in equation (1.19), I rewrite equation (1.23)
as

o 4h2 t2 iy / 2_£t2 _ 4h?
o(wo, k /dtpt ky, h) e m](t,kyah,wo) e VT Tqﬁv

v2
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a. Hale DMO b. DMO from stationary phase c. DMO, stationary phase. drop v term

Figure 1.9: Impulse responses for several implementations of the DMO operator.
a. Hale’s DMO by Fourier transform.
b. The stationary-phase DMO given by equation 1.32.

c. The stationary-phase DMO without the dip filtering term 1.33.
[ER]

where [(t, ky, h,wo) represents the stationary phase approximation from (1.24). The
kernel for the DM O* operator becomes

2 2 1 2 k2 2 L.
/27.‘_(t2 _ %)2(‘“’_3 _ k2)2 two t2_4ﬂL2+h2 w_y2—zw0 t2_%+151gn(wo)f
I(t, ky, hywo) = L E e 0 .
1

t2\/w_0[t2_ﬂ+h2fj_§]

(1.34)

1.5.1 The kinematics of the DMO-before-NMO operator

The DMO* applied before NMO is similar to the DMO described by Gardner et
al. (1986) and Forel and Gardner (1988). Because it is less usual than the DMO
after NMO operator, it is important to examine its behavior and the kinematics. As
mentioned earlier, to distinguish between the two types of DMO operators, [ designate

the DMO operator applied before NMO as DMO* (with an asterisk).
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The parametric equation (??) for the MZO, given in the introduction, is

2h? sin 6
Ty =
vy /12 — 4h cos2 f
2 4h°
to = th _ v?
= : ,
12— 4}; cos2 0

where 1}, is the time from source to receiver, h is the offset equal to half the distance
between source and receiver, v is the medium velocity, and # is the dip of the reflector.

The time tg represents the zero-offset time after the NMO and DMO corrections
(or in one-step MZO). To apply DMO* before NMO, we isolate the NMO correction

4h?

2,2
to_td_ 27
v

where t; is the traveltime after the DMO* correction. Alternatively, we can find the
DMO* traveltimes directly by replacing ¢4 in equation (?7), as follows:

12 = t2—|——

(17 — 42)2 ﬁ(t? — 22 cos? 0)

B -4 > cos? 0 (1.35)
212

B 1 — —4t1’]12h —|— 16h4 sin? 4

N 12— cos2 0

Combined with the expression for the surface coordinate xg, the parametric equations

for DMO* are

B 2h%sin
o vy /17 — 2 2 cos? @
e (1.36)
\/t% — b=+ 16h sin? 0
" 12 — 4};2 cos? 6 ‘

The result of applying the DMO* operator to a constant-offset diffraction curve
appears in Figure 1.10. The left panel in Figure 1.10a, shows the effect of the DMO*
operator applied to a constant-offset diffraction curve. The asterisks mark the lo-
cation of the zero-offset diffraction curve, shifted in time with NMO correction %2'
Applying NMO to this curve will bring it to the correct zero-offset location. On the
right, Figure 1.10b shows the effect of the same DMO* operator on a constant-offset
diffraction curve, using a wavelet and constant amplitude along the DMO* curve. A

better amplitude along the DMO* operator is obtained by using the kernel (1.34).
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Figure 1.10: NMO - DMO transforms a common-offset diffraction curve to a zero

offset hyperbola.

a. DMO* kinema t' ach point on the mmon—offset diffraction curve is spread
along the DMO cur Th asterisks represent the -offset diffraction curve shifted

down wi th the inverse NMO ection (4h2).

b Th esult of pplyngDMO t the common-offset diffraction curve. The artifacts
e the result of using a constant ampli tud along the DMO cur Chap r2-C2f6
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By eliminating the parameter sin 6 between the two relations in (1.36) we arrive
at Gardner’s DMO formulation:

4h? xg. 4R
= = )= 1)+ (1:37)

which is simply the usual DMO shifted down with the NMO correction.
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1.6 Appendix 2.A: Stationary-phase computation
for MZO

Migration to zero-offset for separate common-offset sections requires the computation

of the kernel (1.2)
I(w, ky;to, ho) = /dkh 6iwo(w,ky,kh)t0_ikhh0’

where the phase of the exponential is

vig . 2w

8(kn) = —sien(w) [\/(7 — ) — K+ / (224 k)2 - k] ~huho. (138)

The kernel can be computed numerically by integrating for all values of kj, at a very
high computational cost, or by finding a stationary-phase approximation for it.

Integrals of the form
(k) = / T e (1) di (1.39)

are approximated asymptotically (Zauderer, 1989) when k& — oo by

L

2T 2 : : 7 i
Tk ~ " ikd(to)+sign(¢” (to)) .
(k) [k | 6" (to) |] J(to)e ;

to 1s the stationary point where the derivative of the phase is zero, k is a large real
parameter, f(%) is a real or complex function, and the real valued function ¢(t) is
the phase term. The stationary-point approximation is based on finding the major
contribution to the integral in the neighborhood of the stationary point, by expanding
f(t) and ¢(1) in a Taylor series around 5. The approximation described here assumes
that the second derivative is nonzero, which is the situation in the MZO case. If
the integral (1.39) is defined on a closed interval, the contribution of the point of
stationary phase, g, to the integral is more important than the contribution of the
end points. Integration by parts shows the contribution of the end points to be O(%)
if the derivative of the phase is not zero at the end points (Erdelyi, 1956).

In order to evaluate the stationary point for the phase (1.38), we need to find the
roots of the equation

1 1
2w 2 2 —I— 2w 2 2
\/(T_ y) _kh \/(T"’ky) _kh

to .
@' (kn) = —ho + umgn(u))kh

. (1.40)
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The second derivative of the phase is nonzero, since it consists of the sum of four

positive terms multiplied by “sign(w), as follows:

’Uto . 1 1
(k) = —Psign(w) + +
4 VE =k =k k) - K

ki ki

+ 5+ ; (1.41)
(k) —HIF (k) = W
vl . (ZTW - ky)2 (ZTW + ky)2
= TSlgH(UJ) 2w 2 212 + 2w 2 212
(52— ky)? — k7] [(5F + ky)? — k72

The fact that the second derivative is nonzero ensures that the curvature does not
change, and that the phase always has a maximum or a minimum and therefore a
stationary point. Figure /FIGAppl shows the phase function at several time levels
for a fixed pair of values w, k,. The sign of w determines whether the phase is positive
or negative.

a. Phase for different time levels b. Phage for different time levels
o
% 5

| (@]
ok o
g © o
i 2
(0] | o g’
U] o
g o 8
T T,
= | NN
e~ c o
a N o, |
(e} ) ;

\ \

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6
kh index kh index

Figure 1.11: Plot of the phase function for a constant pair of values w,k,. The

different plots correspond to increasing depth levels.
a. Phase corresponding to positive w.

b. Phase corresponding to negative w. [ER]
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1.7 Appendix 2.B: Stationary-phase algebra for
standard DMO

In this appendix, using the stationary-phase approximation, I evaluate the integral

d. : .
](t, ky, haWO) = /dkh [—w] 62w(“’07kyvkh)t—2khh’

dUJO
where the Jacobian, as computed previously in equation (?7), is

[ UL S

dwy dwo? — v2k? (4wo? — v2k2)?

D=

and the phase w(wq, ky, k)t — kph is

2k2 %
Y B ]t—khh.

4wg? — v2k5

@ZWOl1+

The stationary point k; occurs at the point where the derivative of the phase
®(ky) is zero. Setting the derivative of @ to zero yields the equation

v2kpwot ll v?k} ]_% _
4wg? — UQk; 4wg? — UQkZ ’
which has the solution
. h(4wo? — v2k?)
ky, = Y )
v2\/w02(t2 — %2) + h2k?

Inserting the value of ky in the expression of the phase ®, we have

The second derivative of the phase is also needed, for several reasons. First, the
sign of the 7 term depends on the sign of the second derivative. Second, the amplitude
term includes the second derivative evaluated at the stationary point. And third, the
stationary-phase approximation is based on the assumption that the second derivative
of the phase is different from zero at the stationary point. The expression of the second
derivative is
wot(14” — k2)3

" o__ v?2

(R4 HDE

Evaluating the second derivative ®” at the stationary point &5, gives us

//( ~ ) (tQ B 41]22 + hil;i )%
o kh = 4wg? ) ’
(5T p2)

2
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and the Jacobian evaluated at th is

2 4h°
t 2

[dw] B
dwO kn=Fkn t\/tz—%—l-h?k .

ol\J|<£l\J

Finally, multiplying all the terms produces the following stationary-phase approxi-
mation of the initial kernel:

1t by i) e V2P ) - ki)%emmwgnmﬁ
3 VY bl ~ ]

5
k277
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