previous up next print clean
Next: Interpolation in Stolt migration Up: Popovici, Blondel, & Muir: Previous: Popovici, Blondel, & Muir:

INTRODUCTION

Downward continuation and imaging in the isotropic case (Gazdag, 1978) can be written as  
 \begin{displaymath}
M(z,k_x)=\int d\omega e^{i k_z z} P(\omega,k_x),\end{displaymath} (1)
where  
 \begin{displaymath}
k_z = -{\rm sign} (\omega) \sqrt{{\omega^2 \over v^2}- k_x^2}.\end{displaymath} (2)
In equation (1), $P(\omega,k_x)$ represents the Fourier transform of the seismic field p(t,x) recorded at the surface, following Claerbout's (1985) sign convention

\begin{displaymath}
P(\omega,k_x)= 
\int dt \; e^{i\omega t} \int dx e^{-ik_xx} p(t,x),\end{displaymath}

and v represents half the velocity, as used in the exploding reflectors model.

We can rewrite equation (1) as time migration replacing the depth steps by equivalent time steps $\tau$: 
 \begin{displaymath}
M(\tau,k_x)=\int d\omega e^{i k_{\tau} \tau} P(\omega,k_x).\end{displaymath} (3)
where we define

\begin{displaymath}
\left \{
\begin{array}
{lcl}
\tau & = & {z \over v}
\\ \\ k_...
 ...\rm sign}(\omega)\sqrt{\omega^2- v^2 k_x^2}.\end{array}\right .\end{displaymath}

For a constant velocity medium, Stolt (1978) transforms the integral in $\omega$ using a Fourier transform, which can be computed rapidly via a Fast Fourier Transform (FFT) algorithm  
 \begin{displaymath}
M(\tau,k_x)=\int dk_{\tau} e^{i k_{\tau} \tau} J(k_{\tau},k_x)
P(\omega(k_{\tau},k_x),k_x),\end{displaymath} (4)
where $J(k_{\tau},k_x)$ represents the Jacobian of the transformation from $\omega$ to $k_{\tau}$

\begin{displaymath}
J(k_{\tau},k_x)={{d\omega} \over {dk_{\tau}}} = {{k_{\tau}} \over 
{\sqrt{k_{\tau}^2+v^2k_x^2}}}\end{displaymath}

and $P(\omega(k_{\tau},k_x),k_x)$ represents the initial data as function of the new variable $k_{\tau}$.



 
previous up next print clean
Next: Interpolation in Stolt migration Up: Popovici, Blondel, & Muir: Previous: Popovici, Blondel, & Muir:
Stanford Exploration Project
11/16/1997