previous up next print clean
Next: Using the Eikonal equation Up: USING 3-D EIKONAL EQUATION Previous: USING 3-D EIKONAL EQUATION

Presentation of the 3-D case

In the 3-D case, the wave equation corresponding to the ray-theoretic interpretation of all-angle time migration is  
 \begin{displaymath}
\frac{\partial^2 p'}{\partial x'^2} \: + \:
 \frac{\partial^...
 ...\zeta)} \,
 \frac{\partial^2 p'}{\partial t' \, \partial \zeta}\end{displaymath} (11)
in the 3-D time-retarded coordinate system  
 \begin{displaymath}
\begin{array}
{lcl}
 x' & = & x \\  y' & = & y \\  t' & = & t + \zeta\end{array}\end{displaymath} (12)
with the new time-like vertical coordinate $\zeta$, 
 \begin{displaymath}
\zeta \; = \; \int_{0}^{z} \: \frac{dz}{V \, (x,y,z)}\end{displaymath} (13)

Following the same scheme as for the 2-D case and using equations (12) and (13), we finally obtain the 3-D Eikonal equation for time migration:  
 \begin{displaymath}
\left( \frac{\partial \tau}{\partial x} \: + \:
 {\cal A} \,...
 ...l \tau}{\partial z} \right)^2 \; = \;
 \frac{1}{V^2 \, (x,y,z)}\end{displaymath} (14)
with
\begin{displaymath}
{\cal A} \, (x,y,z) \; = \;
 - \, V \, (x,y,z) \, \frac{\partial \zeta}{\partial x}\end{displaymath} (15)
and
(16)


previous up next print clean
Next: Using the Eikonal equation Up: USING 3-D EIKONAL EQUATION Previous: USING 3-D EIKONAL EQUATION
Stanford Exploration Project
11/17/1997