Next: THE TRIANGLE AS AN Up: INTRODUCTION Previous: The shape of the

## The rules the operator must obey

The primary attribute of an integral method is to respect the kinematic component of the process. However, in order to yield a consistent stack of the operators illuminating a given location, the integration should be a weighted sum. In other words, an amplitude function should be applied along the operator. The integral DMO process will be consistent if it obeys the following rules.

Rule 1. According to Hale 1991, ``The impulse responses [obtained by Fourier Transform DMO] may be used as a standard by which to judge integral DMO methods''. Because (f,k) DMO methods have a perfect behavior with respect to amplitude, the integral DMO operator should be as close as possible to the (f,k) DMO operator in amplitude and phase. Thus, we expect the integral impulse response to have a low amplitude and a high-frequency content near x=0 and a high amplitude and a low-frequency content when the slope of the operator becomes steeper.

Rule 2. Flat events must not be affected in amplitude and phase by the DMO process. This rule, clearly stated by Hale 1991, is perfectly respected by any (f,k) DMO process Hale (1983); Liner (1990), but it represents a challenging test for integral DMO processes.

Rule 3. Events of a given reflectivity must show balanced amplitude after the DMO process, whatever their dip. This rule is essential in order not to spoil the data for a possible AVO study.

The first section of this paper explains how to avoid the aliasing of the operator. In the next section, the three rules stated above help us choose the most convenient weighting among three amplitude schemes selected from the literature. Finally, a brief section discusses how to apply the operator on a 3-D grid.

Next: THE TRIANGLE AS AN Up: INTRODUCTION Previous: The shape of the
Stanford Exploration Project
11/17/1997