previous up next print clean
Next: Integration order Up: Introduction Previous: Second definition: MZO extracted

Integration limits

From now on for simplicity I will use the variables

\begin{displaymath}
\begin{array}
{lcl}
v_h & = & {{v k_h} \over 2}
\\ \\ v_y & = & {{v k_y} \over 2}.\end{array}\end{displaymath}

In equation (8), the values of the constant kz have to be real. Imaginary values of kz do not satisfy the downward continuation ordinary differential equation:  
 \begin{displaymath}
{{\partial^2 P} \over {\partial z^2}}=
-k_z^2 P\end{displaymath} (12)
and have to be excluded. Real values of kz from equation (9) require both of the following conditions to be satisfied:

\begin{displaymath}
\left \{
\begin{array}
{lcl}
\mid \omega \mid & \geq & \mid ...
 ... \mid \omega \mid & \geq & \mid v_y-v_h \mid\end{array}\right .\end{displaymath}

which can be reduced to the condition  
 \begin{displaymath}
\begin{array}
{lcl}
\mid \omega \mid & \geq & \mid v_y \mid + \mid v_h \mid\end{array}\end{displaymath} (13)

Therefore, equation (8) should be written  
 \begin{displaymath}
\begin{array}
{lcl}
p(t=0,h=0,k_y,z) & = & \displaystyle{
{\...
 ...a
 e^{ik_z(\omega,k_h,k_y)z}
p(\omega,k_h,k_y,z=0)}}\end{array}\end{displaymath} (14)
For each value of vy the integration in $\omega$ is done in two regions: under the value $\omega=-(\mid v_h \mid + \mid v_y \mid ) $ and over the value $\omega=(\mid v_h \mid + \mid v_y \mid ) $ as displayed in Figure [*].

 
khkyomega
khkyomega
Figure 2
Regions of integration.
view

Before substituting the new variable $\omega_0$ in the prestack migration equation let us analyze the limits of integration for the new variable $\omega_0$.From Appendix A, the expression of $\omega_0(\omega,k_h,k_y)$ is
\begin{displaymath}
\omega_0^2 = {1 \over 2} 
\left [{ \omega^2+v_y^2-v_h^2 + 
{\sqrt {(\omega^2+v_y^2-v_h^2)^2-4 \omega^2 v_y^2}}} \right ]\end{displaymath} (15)
and the boundary values for $\omega_0$ corresponding to the limits for $\omega$ in equation (13):

\begin{displaymath}
\begin{array}
{lcl}
\mid \omega_0 \mid & \geq & \sqrt{v_y^2+ \mid v_y v_h \mid}\end{array}.\end{displaymath}


previous up next print clean
Next: Integration order Up: Introduction Previous: Second definition: MZO extracted
Stanford Exploration Project
11/17/1997