previous up next print clean
Next: DISCUSSION Up: Mo: Numerical analysis Previous: The Crank-Nicolson method

THE MODIFIED WAVE EQUATION

Since the numerical solution is an approximation of the exact solution, it does not exactly satisfy the continuous partial differential equation at hand, but it satisfies a modified equation. In this case, I use the Crank-Nicolson method to solve the diffraction equation
\begin{displaymath}
{\partial P\over \partial \tau } = \alpha {{\partial}^2 P\over \partial x^2}\end{displaymath} (32)
\begin{displaymath}
{ {P^{(n+1)}-P^{(n)}}\over {\Delta \tau}} = {\alpha \over 2}...
 ...partial x^2} + {{\partial}^2 P^{(n)}\over \partial x^2} \right]\end{displaymath} (33)
\begin{displaymath}
{ {P^{(n+1)}_{j}-P^{(n)}_{j}}\over {\Delta \tau}} = {\alpha ...
 ...)}_{j+1}-2P^{(n)}_{j}+P^{(n)}_{j-1}}\over {\Delta x^2}} \right]\end{displaymath} (34)
By Taylor series expansion of every term about Pnj, I obtain the modified wave equation that the numerical solution actually satisfies:
\begin{displaymath}
{\partial P\over \partial \tau } = \alpha {{\partial}^2 P\over \partial x^2} + \epsilon \end{displaymath} (35)
\begin{displaymath}
\epsilon = { {\alpha \Delta x^2}\over 12} {{\partial}^4 P\ov...
 ...2 {\alpha}^2 \right] {{\partial}^6 P\over \partial x^6}+ \ldots\end{displaymath} (36)
The error term shows that the trace spacing interval $\Delta x$ plays a larger role than the depth step size $\Delta \tau$of downward continuation in determining the accuracy of the numerical solution.


previous up next print clean
Next: DISCUSSION Up: Mo: Numerical analysis Previous: The Crank-Nicolson method
Stanford Exploration Project
11/17/1997