previous up next print clean
Next: THE MODIFIED WAVE EQUATION Up: OVERMIGRATION CAUSED BY THE Previous: OVERMIGRATION CAUSED BY THE

The Crank-Nicolson method

The most popularly used numerical method of solving a stiff system of ODEs such as (11) is the Crank-Nicolson method, chosen because of its unconditional stability and good accuracy. First let us look at the Crank-Nicolson (trapezoidal) method for a single first-order ODE. Applying the Crank-Nicolson method to the model equation
\begin{displaymath}
{{dy}\over {dt}}=\lambda y\end{displaymath} (21)
yields
\begin{displaymath}
{{y_{j+1}-y_{j}}\over {\Delta t}} = {\lambda \over 2} (y_{j+1} +y_{j})\end{displaymath} (22)
or
\begin{displaymath}
y_{j+1} ={ {1+{{\lambda \Delta t}\over 2}} \over {1-{{\lambda \Delta t}\over 2}}}y_{j} \end{displaymath} (23)
Thus the solution of (21) can be written as
\begin{displaymath}
y_{j}={\sigma}^{j}y_{0}\end{displaymath} (24)
where y0 is the initial condition and
\begin{displaymath}
\sigma = { {1+{{\lambda \Delta t}\over 2}} \over {1-{{\lambda \Delta t}\over 2}}}\end{displaymath} (25)

For the migration wavefield extrapolation equation (19), the eigenvalue $\lambda=i\beta$ ($\beta \gt$) is purely imaginary. Thus
\begin{displaymath}
\sigma = \vert\sigma\vert e^{i\theta}\end{displaymath} (26)
Because $\vert\sigma\vert=1$, the Crank-Nicolson method as applied to migration wavefield extrapolation does not generate any amplitude error. This result agrees with the one-way migration wavefield extrapolation that is a dampless sinusoidal wave propagation. However, there is phase error. The numerical solution is
\begin{displaymath}
\theta = 2 \arctan {{ \beta \Delta t }\over 2}\end{displaymath} (27)
\begin{displaymath}
y_{j}={\sigma}^{j}y_{0}\end{displaymath} (28)
\begin{displaymath}
y_{j}={\sigma}^{j}y_{0}= e^{i\theta j} y_{0}\end{displaymath} (29)
But the exact solution of the ODE (21) is
\begin{displaymath}
y(x)= e^{i\beta t} y_{0} = e^{i\beta \Delta t j} y_{0}\end{displaymath} (30)
The phase error is
\begin{displaymath}
PE=\beta \Delta t - 2\arctan {{ \beta \Delta t }\over 2}= {{(\beta \Delta t)}^3\over 12} + \ldots \end{displaymath} (31)
The numerical solution lags behind the exact solution. Thus applying the Crank-Nicolson method to the diffraction equation causes overmigration - the experimental error. And the eigenvalues with larger moduli have larger degrees of overmigration.


previous up next print clean
Next: THE MODIFIED WAVE EQUATION Up: OVERMIGRATION CAUSED BY THE Previous: OVERMIGRATION CAUSED BY THE
Stanford Exploration Project
11/17/1997