previous up next print clean
Next: S-S reflection coefficient Up: IMAGING CONDITION Previous: P-P reflection coefficient

P-S and S-P reflection coefficients

Similarly, a pure Sv shear mode can be described by the curl of a vector potential. To isolate the shear wave it is enough to apply a curl operator to the displacement field.
\begin{displaymath}
\mbox{\boldmath$\chi$}(x,z,\omega) \; = \; \nabla \times {\b...
 ...\nabla \times \nabla \times \mbox{\boldmath$\psi$}(x,z,\omega),\end{displaymath} (3)

For this 2-D implementation the wavefields are invariant in the direction of the unit vector normal to the experiment plane ($\bf \hat{y}$). As a result, the only non vanishing component of $\chi$ will be in the $\bf \hat{y}$ direction. Defining

\begin{displaymath}
\chi(x,z,\omega) \; = \; \left(\nabla \times {\bf u}(x,z,\omega) \right) 
\cdot {\bf \hat{y}}, \end{displaymath}

and using the same approach used for P-P, results in the following equation to describe the imaging condition for the P-S reflection coefficient  
 \begin{displaymath}
R_{PS}(x,z,t) \; = \; {v_p \; \chi^r(x,z,t) \over v_s \; \ph...
 ...dot {\bf \hat{y}}
 \over v_p \; \nabla \cdot {\bf u^s}(x,z,t)},\end{displaymath} (4)
and for the S-P reflection coefficient  
 \begin{displaymath}
R_{SP}(x,z,t) \; = \; {v_s \; \phi^r(x,z,t) \over v_p \; \ch...
 ...ft(\nabla \times 
{\bf u^s}(x,z,t) \right) \cdot {\bf \hat{y}}}\end{displaymath} (5)

previous up next print clean
Next: S-S reflection coefficient Up: IMAGING CONDITION Previous: P-P reflection coefficient
Stanford Exploration Project
11/18/1997