Stoffa et al. (1990) present an alternative to the PSPI, replacing the downward continuation step with two or more velocities by a single average velocity followed by a phase shift of the wavefield with a perturbation term to account for lateral velocity variations. The Split-step algorithm is based on splitting the space variant slowness () into a constant term and a perturbation term,

where(7) |

(8) |

(9) |

Stoffa et al. show that equation (9) can be integrated over a thin depth layer by ignoring the contribution of the .Equation (9) is Fourier transformed in surface coordinates after the second order term of the slowness perturbation is dropped and subsequently integrated over the depth layer . After inverse Fourier transformation back into surface coordinates the solution has the form

(10) |

The phase subtraction and addition trick in Gazdag's algorithm is replaced by multiplication with

after the downward extrapolation. Compared with Gazdag's trick to phase shift with followed by the only difference is that Gazdag (1984) does the first phase shift before the Fourier transform while Stoffa et al. (1990) do it after the Fourier transform. Though analytically not identical in the general case, the qualitative idea is the same.The two algorithms are compared in Figure 1.

Figure 1

12/18/1997