previous up next print clean
Next: P plane waves about Up: ELLIPTIC APPROXIMANTS FOR TI Previous: SH plane waves about

P & SV plane waves about the Z-axis

Begin with the exact dispersion relations for P and SV waves.
\begin{eqnarray}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2 \non...
 ...- (W_{11} - W_{44}) S^2)^{2} 
+ 4(W_{13} + W_{44})^{2} C^{2}S^{2})\end{eqnarray}
(2)
Now convert the cosines under the surd to sines.
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ...- 2W_{44}) S^2)^{2} 
+ 4(W_{13} + W_{44})^{2} (1 -S^{2})S^{2})\end{eqnarraystar}
Neglecting terms in S4.
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ... 
(W_{11} + W_{33} - 2W_{44}) 
- 2(W_{13} + W_{44})^{2})S^{2})\end{eqnarraystar}
Take constant out of bracket.
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ..._{44}) 
- 2(W_{13} + W_{44})^{2}}{(W_{33} - W_{44})^{2}}S^{2})\end{eqnarraystar}
Expand the surd in powers of S2.
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ..._{44}) 
- 2(W_{13} + W_{44})^{2}}{(W_{33} - W_{44})^{2}}S^{2})\end{eqnarraystar}
Return factor to original location
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ...} - 2W_{44}) 
- 2(W_{13} + W_{44})^{2}}{W_{33} - W_{44}}S^{2})\end{eqnarraystar}
Simplify.
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ...S^{2} 
+ \frac {2(W_{13} + W_{44})^{2}}{W_{33} - W_{44}}S^{2})\end{eqnarraystar}
Reintroduce cosines.
\begin{eqnarraystar}
2W(\theta) = (W_{33} + W_{44}) C^2
+ (W_{11} + W_{44}) S^2
...
 ...S^{2} 
+ \frac {2(W_{13} + W_{44})^{2}}{W_{33} - W_{44}}S^{2})\end{eqnarraystar}

previous up next print clean
Next: P plane waves about Up: ELLIPTIC APPROXIMANTS FOR TI Previous: SH plane waves about
Stanford Exploration Project
12/18/1997