next up previous print clean
Next: Examples Up: 2: THE STANDARD DISCONTINUITIES Previous: Definition

The simplest properties

Let $S(t) \in {\rm C}^{q}$, then:

\begin{displaymath}
R_{q}(t) + S(t) \stackrel{q}{\sim} R_{q}(t)\end{displaymath}

and  
 \begin{displaymath}
S(t)R_{q}(t) \stackrel{q}{\sim} S(0) R_{q}(t).\end{displaymath} (10)

Let us prove the last formula. We must prove that ${\bf D}^{q}[S(t)R_{q}(t)
-S(0)R_{q}(t)]$ is a continuous function:
\begin{eqnarray}
{\bf D}^{q}[\cdot ]& = & {\bf D}^{q} \{[S(t) - S(0)] R_{q}(t) \...
 ...{S^{'}(t) R_{q}(t) \} + {\bf D}^{q-1}\{ [S(t)-S
(0)]R_{q-1}(t) \}.\end{eqnarray} (11)
(12)
(13)

The last term has the sharpest discontinuity , so we needn't pay any attention to the first one. Repeating the procedure we get at the end the sharpest term:

[S(t)-S(0)]R0(t)

which is continuous at the point t=0.

Instead of equation (10), we may derive a more general formula:

\begin{displaymath}
S(t)R_q(t)\left\{\begin{array}
{cl}
 \stackrel{q}{\sim} & S(...
 ...}^{s}{(q+r)!\over r!q!}S^{(r)}(0)R_{q+r}(t).\end{array} \right.\end{displaymath}


next up previous print clean
Next: Examples Up: 2: THE STANDARD DISCONTINUITIES Previous: Definition
Stanford Exploration Project
1/13/1998