next up previous print clean
Next: Hilbert transformation Up: 2: THE STANDARD DISCONTINUITIES Previous: Examples

The operators ${\bf I}^p$ and ${\bf D}^{-p}$

It is obvious that the integration of Rq(t) gives Rq+1(t):

\begin{displaymath}
{\bf I} R_q(t)=R_{q+1}(t) \end{displaymath}

and in general:

\begin{displaymath}
{\bf I}^p R_q(t)=R_{q+p}(t) \mbox{\hspace{1.0cm}} (p\gt) .\end{displaymath}

Does it imply that: ${\bf D}^{-p}R_q(t)=R_{q+p}(t)$ (where ${\bf D}^{-p}$ is the inverse of ${\bf D}^p$)? If we apply the operator ${\bf D}^p$ to the sum Rp+q(t)+Pn(t), we get for $n\leq p-1$:

\begin{displaymath}
{\bf D}^p[R_{q+p}(t)+P_n(t)]=R_q(t).\end{displaymath}

But $P_n(t) \stackrel{\infty}{\sim}0$, so:  
 \begin{displaymath}
{\bf D}^{-p}R_q(t) \stackrel{\infty}{\sim}R_{q+p}(t).\end{displaymath} (14)

next up previous print clean
Next: Hilbert transformation Up: 2: THE STANDARD DISCONTINUITIES Previous: Examples
Stanford Exploration Project
1/13/1998