next up previous print clean
Next: Inverse transformation Up: EXPRESSIONS OF THE PARABOLIC Previous: EXPRESSIONS OF THE PARABOLIC

Modeling operation

The modeling equation is similar to Thorson's equation for hyperbolic transforms. It expresses the NMO-corrected data d(t,h) as a function of the field U in the t0-p domain:  
 \begin{displaymath}
d(t,h)=\sum_{t_0}\sum_p U(t_0,p)\delta[t_0-(t-ph^2)]\end{displaymath} (3)
whereas, for Thorson's equation, the $\delta$ term has to be replaced by $\delta\!~[~t_0~-~\sqrt{t^2-p^2h^2}~]$ . Similarly, it can be compared to the slant-stack modeling:

\begin{displaymath}
d(t,h)=\sum_{\tau}\sum_p U(\tau,p)\delta[\tau-(t-ph)]\;. \end{displaymath}

Equation (3) will transform a spike in the t0-p domain into a parabola (or straight line if p=0) in the time-offset domain.

I symbolize equation (3) as: d=L.U. Equation (3) can be expressed in the frequency domain. For the $\tau-p$ transform, Kostov (1989) showed that:

\begin{displaymath}
d(\omega,h)=\sum_p U(\omega,p)e^{-j\omega ph} \;.\end{displaymath}

For the parabolic transform, we get:
\begin{displaymath}
d(\omega,h)=\sum_p U(\omega,p)e^{-j\omega ph^2} \;\end{displaymath} (4)
So, for a fixed $\omega$, an element of the matrix L is:

\begin{displaymath}
L_{ik}=\exp(-j\omega p_kh_i^2) \;.\end{displaymath}

Stacking along parabolas actually corresponds to computing U=LT.d (as Thorson pointed out in the case of hyperbolic stacking). We will transform the data d(t,h) into the t0-p domain by using the least-squares inverse of L, i.e. (LTL)-1LT in the overdetermined case (or LT(LLT)-1 in the underdetermined case):  
 \begin{displaymath}
U(\omega,.)=(L^TL)^{-1}.L^Td(\omega,.) \mbox{\hspace{1.0cm}($\omega$\space is fixed)}\end{displaymath} (5)


next up previous print clean
Next: Inverse transformation Up: EXPRESSIONS OF THE PARABOLIC Previous: EXPRESSIONS OF THE PARABOLIC
Stanford Exploration Project
1/13/1998