next up previous print clean
Next: RATE OF CONVERGENCE Up: Jedlicka: Cascaded normal moveout Previous: PARTIAL NORMAL MOVEOUT

PROOF FOR 15-DEGREE PARTIAL NORMAL MOVEOUTS

Let us write
\begin{displaymath}
{\cal T}_{i+1}=\sqrt{{\cal T}_i-{x^2 \over Nv^2}}\end{displaymath} (15)
for the nontruncated case and  
 \begin{displaymath}
\tilde{{\cal T}}_{i+1}=\tilde{{\cal T}}_i-{x^2 \over 2Nv^2\tilde{{\cal T}}_i}\end{displaymath} (16)
for the truncated case. We will estimate the difference $(T^2_N-\tilde{T}^2_N)$and show that this difference tends to zero as $N \to \infty$.We can write
\begin{eqnarray}
{\cal T}^2_{i+1}-\tilde{{\cal T}}^2_{i+1}&=&({\cal T}^2_i-{x^2 ...
 ...e{{\cal T}}^2_i)-{x^4 \over 4N^2v^4}{1 \over \tilde{{\cal T}}^2_i}\end{eqnarray} (17)
(18)
(19)
As we did in the previous section, we can rewrite this equation into a system of equations:
\begin{eqnarray}
{\cal T}^2_1-\tilde{{\cal T}}^2_1&=&({\cal T}^2_0-\tilde{{\cal ...
 ...}}^2_{N-1})-{x^4 \over 4N^2v^4}{1 \over \tilde{{\cal T}}^2_{N-1}} \end{eqnarray} (20)
(21)
(22)
(23)
By summing up all these equations we get  
 \begin{displaymath}
T^2_N-\tilde{T}^2_N=-{x^4 \over 4N^2v^4}\sum_{i=0}^{N-1}{1 \over \tilde{{\cal T}}^2_i}\end{displaymath} (24)
Now we need to prove that there exists a constant K independent of N such that
\begin{displaymath}
{1 \over \tilde{{\cal T}}^2_i} < K\end{displaymath} (25)
for all $i=0,1,\cdots,N-1$.From equation (16) we can see that
\begin{displaymath}
\tilde{{\cal T}}_{i} \gt \tilde{{\cal T}}_{i+1}\end{displaymath} (26)
Similarly from equation (24) we can see that
\begin{displaymath}
\tilde{T}_N \gt T_N\end{displaymath} (27)
Putting both equations together we have
\begin{displaymath}
\tilde{{\cal T}}_1\gt\tilde{{\cal T}}_2\gt\cdots \gt\tilde{T}_N\gt T_N\end{displaymath} (28)
or
\begin{displaymath}
{1 \over \tilde{{\cal T}}^2_i} < {1 \over T^2_N}= {1 \over {t^2-x^2/v^2}}\end{displaymath} (29)
where the last equation follows from equation (14). If we define
\begin{displaymath}
K={1 \over {t^2-x^2/v^2}}\end{displaymath} (30)
then from equation (24) we have  
 \begin{displaymath}
\vert T^2_N -\tilde{T}^2_N \vert < {x^4 \over 4N^2v^4} NK={x^4 K \over 4Nv^4}\end{displaymath} (31)
which tends to zero as $N \to \infty$.This proves that the Nth partial normal moveout applied N times is equal to the normal moveout for large N.

The convergence of cascaded NMO to a semicircle can be clearly seen on Figure [*]a. The proof of convergence holds for $x/v \neq t$. The behavior for x/v = t can be seen from sequences at the sides of Figure [*]b. The figure convinces us that there is convergence even for x/v=t, but that it is extremely slow.


next up previous print clean
Next: RATE OF CONVERGENCE Up: Jedlicka: Cascaded normal moveout Previous: PARTIAL NORMAL MOVEOUT
Stanford Exploration Project
1/13/1998