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Parallel finite-difference migration in practice

Stewart A. Levin

ABSTRACT

In preparation for my SEG talk on vector and parallel finite-difference migration I
obtained some free time on the National Science Foundation’s CRAY X-MP in San
Diego. I also talked Rob Clayton into letting me use his recently acquired Ametek 64-

node hypercube for some experiments. This article expands on the required annual NSF
report I wrote.

INTRODUCTION

In Levin and Parks (1985) we described effective ways, in theory, to employ vector
and parallel computers to image the earth’s subsurface using seismic waves recorded at
the surface and finite-differences to extrapolate then into the subsurface. The main
improvement was a change of coordinates in conventional finite-difference migration that
reduced a recursion along all three coordinate axes to a recursion only along two. Along
the remaining axis computations decoupled. Later I had the opportunity to try out my
ideas on our Convex C-1 vector computer. I reported in SEP-48 (Levin 1986) that I
gained about a five-fold improvement on side-by-side benchmarks.

CYCLIC REDUCTION

A second method I suggested for improving parallelism in finite-difference migration
was to use cyclic reduction (Levin 1984b). Recently I implemented this in a conventional
15 degree implicit migration program (appendix A.) I then reran the earlier comparison
against my SEP-48 vectorized migration and found the performance ratio decrease from
5:1 to 3:1. So I retract my SEP-48 comment that cyclic reduction runs slower in practice
that purely scalar solution. Whether similar improvements are available on other
machines is architecture dependent. For example on the Convex the need to access vec-
tor elements stored in noncontiguous locations was not a drawback because the vectors
fit easily into the 64K high-speed cache. Other machines that do not have a large high-
speed cache, such as the Cray series, do typically slow down accessing these arrays.
Especially when the element-to-element stride is a power of two.*

* A year ago I wrote a power-of-three variant of cyclic reduction for constant coeflicient tridiagonal solution
(in Cray-1 assembler) to get around this problem. This made all strides odd at the cost of shortening the
average vector length by about a third.
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A question of general interest I was recently asked is how to apply cyclic reduction
to higher order finite-differencing which involves solving pentadiagonal or higher order
banded systems. The scalar tridiagonal techniques apply directly to the the higher order
systems, needing only obvious changes. But generalizing cyclic reduction is trickier.
Here’s how it’s done. I’ll use a pentadiagonal system for concreteness.

First factor the system into ordinary LDU form. Then L is a lower tridiagonal
matrix and corresponds to the recursion
Yi = % —biayia-lii oy (1)

for computing the y’s given the 2 ’s and some initial (zero) values. The trick is to recast

this second order scalar recursion as a first order vector recursion. Defining

Xi = (a,z)"
2
Y, = (u, yi—l)T 2)
then relation (1) becomes
i = X, -L; Y, (3)

where

biicn biig
Li — 1 0 . (4)

Now cyclic reduction can be applied as in the scalar bidiagonal case shown in the
appendix. The only difference is that the new coefficients are now 2 by 2 matrices and
you must be careful not to multiply them in the wrong order. The U factor can then be
applied the same way. For a more detailed analysis as well as alternatives to cyclic
reduction I recommend Axelsson and Eijkhout (1986) and Eijkhout (1985).

WHY THE HYPERCUBE?

In July I made a brief visit to Caltech’s geophysics department to run a parallel
finite-difference migration on a 64 node Ametek hypercube. The reason for the visit was
this was the first truly parallel (as opposed to vector) computer I’ve been able to get my
hands on. As the title of my talk includes the word “parallel” it was desirable to have
some hands-on experience with finite-difference migration on such a machine. Also I’d

been keeping up with the hypercube literature just for the fun of it.
The Ametek hypercube is not a number cruncher. Applying LDU factors of a tridi-

agonal matrix in one node to a 256 point vector took about a second. The only compiler
available is a cross-compiler for C that generates extremely inefficient code. (Rob Clay-
ton has observed a factor of ten when he compiled and ran one of his programs on an
IBM personal computer that use the same CPU chip.) Also the Ametek system doesn’t
permit overlapped computation and node-to-node data transfer. But it still serves as a

reasonable diagnostic for how well finite-difference migration will fit on more expensive,
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turbocharged brands of hypercube.

The algorithm I used configured the hypercube as a linear list, initialized with
zeros, and fed the input time slices into one end (node 0) with the computational grid
(two successive subdiagonals) sliding sideways each time to make room. When the last
time slice had been input, the completely migrated image was then sucked back out one
time slice at a time from node 0 and written to output. Due to careful preparation (i.e.
reading the manuals) and a bit of luck, I was able to install, debug, and run my program
in one afternoon on the Ametek. On a 64 time slice test I did indeed get runtime

improvements of more than a factor of 20 over single processor times.

The improvements were progressively less marked when the number of time slices
was Increased to the more realistic number 1024. This turns out to be due to elegant
but inefficient coding on my part. As the number of time slices was greater than the
number of nodes (64) in the hypercube, I divided the computational grid into equal sized
chunks of 1024/64 or 16 time levels. Then as the time slices were fed into the cube, they
shifted across the first node 16 steps and then shifted to the next node for another 16
steps and so forth. This was wasteful. For example, the first node kicked things off by
doing 16%15/2 extrapolation steps while the others nodes sat idle. If they had been used
to help, each node would have needed to do at most 16 extrapolation steps to reach the
same partial results. Hindsight is wonderful. Nevertheless the hypercube tests did
demonstrate the feasibility of parallel finite-difference migration and gave me a good

introduction to hypercube programming styles and practicalities.

WHY THE CRAY?
The purpose of using the Cray X-MP /48 for finite-difference migration tests was to

work in a combination vector and parallel environment. The X-MP/48 contains four
central processing units, each one a vector computer similar to the older Cray-1 series.
The four units share the same central memory and I/O channels and can communicate
and synchronize with each other through shared registers and semaphores. My idea was
to vectorize in essentially the same way I did on our Convex and use two levels of cyclic
reduction on the resulting vector recursion to allow all four processors to work in parallel
on the computations. I did not succeed in doing this for the simple reason that multi-
tasking is not yet available on the San Diego Cray. So I did not get my “money’s-

worth” from my half hour Cray allotment.

Second best

What I did instead was benchmark on the Cray the same program I had run on the
Convex. The result: Convex 180 seconds, Cray 22 seconds. In terms of megaflops these
translate to: Convex 15 Mflops, Cray 120 Mflops. The cycle time of a Convex for 32 bit
floating point operations is about 5 times the Cray’s. The additional factor of about two

in Cray performance is due to its ability to fetch two operands from storage per cycle
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subroutine triply(l,i,d,j,u,k,y,ly,m,n)

Parallel migration

C apply LDU factors to solve tridiagonal system. Answer overwrite y.

implicit none
integer m,n,i,j,k,ly
real 1(i,n),d(j,n),u(k,n),y(ly,n)

#define Y(in) y(im,in)
#define E(in) y(im,in)
#define F(in) y(im,in)
#define L(in) 1(im,in)
#define D(in) d(im,in)
#define U(in) u(im,in)
C

C

C

integer im,in
if(n.le.0) return

do im=1,m

E(1)=Y(1)
enddo
do in=2,n,1

do im=1,m
E(in)=Y(in)-L(in)*E(in-1)
enddo
enddo

do im=1,m
F(n)=E(n)*D(n)
enddo

do in=n-1,1,-1
do im=1,m
F(in)=E(in)*D(in)-U(in)*F(in+1)
enddo
enddo

return
end

FIG. 1. Algorithm triply used for vectorizing compiler tests. For speed, I expanded the
inner loops to work on groups of five consecutive values of the do variable in in the
comparisons reported below.
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where the Convex can only fetch one. In short the numbers are consistent.

[ also attempted to rate the relative performance of the Convex and Cray vectoriz-
ing Fortran compilers. I did this by taking the most heavily used inner loop of the
finite-difference migration (subroutine triply of Figure 1.) and recoding it in Convex
assembly language. The improvement in run time was only ten percent indicating the
Convex compiler was doing a commendable job. I translated the assembly code into
Cray assembler and did the same comparison on the X-MP. Result: the run time with
the assembler program was about five percent slower than the Fortran run. And I

thought I knew how to write good vector assembly code!

After going over my assembler subroutine to make sure I didn’t make any conver-
sion bugs during the translation process, I read through the X-MP hardware manual to
see what architectural differences between the Convex and the X-MP might account for
the problem. I found the major difference was in how memory is accessed. The
Convex’s memory can be accessed at the rate of one word per cycle, the X-MP can read
two words per cycle or write one word per cycle. It also has a bidirectional mode ena-
bling the two reads and one write to proceed in parallel. A query to the San Diego con-
sultants determined that the default for Fortran programs is to disable bidirectional
mode and told me about a newer version of the Cray Fortran compiler that was able to
properly handle bidirectional mode. So I recompiled the Fortran subroutine with
bidirectional mode enabled. I also rearranged my assembly code to take advantage of
the memory differences and reran my tests. Result: Fortran 20 seconds, assembly 21

seconds. A speed improvement but the difference still remained.

My next suspect was the difference in the order that memory was being accessed by
the two versions of the subroutine. So I added a parameter to the program to stagger
the arrays the subroutines were using among different combinations of the 64 memory
banks of the Cray. Ten side by side runs showed some small timing differences attribut-
able to memory access order but the Fortran subroutine remained consistently faster
than the assembler version.

So memory alignment was not the problem. I turned on the assembler listing
option of the Fortran compiler and had a look. I discovered two things. First the new
Fortran compiler did not generate safe bidirectional code for my loops. But this would
not affect timings, only computational results. Second I found that the Fortran compiler
took full advantage of the partial loop unrolling I had employed (a trick I took from the
BLAS codes distributed by Jack Dongarra) to move register loads to the front and regis-
ters stores to the back of the loop thereby reducing significantly the number of register
conflicts that were slowing down my assembler code. Simplified a bit, the point is this: a
crucial loop required 3 registers loads and one register store per element. The X-MP is
capable of 2 loads and one store per cycle. The theoretical best one can hope to attain is
then one result every one and a half cycles. My Fortran was nearly achieving this, the

assembler code was only producing one result every two cycles. Moral: for parallel
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programming you may have to think in terms of fractions.

The unsimplified story is this. The assembler code was slowing down due to regis-
ter conflicts: a vector register computed during one iteration of a loop was being both
used as an arithmetic operand and stored into memory in the next trip through the loop.
The Cray doesn’t allow both to happen in parallel and delays one until the other is
done. The correct thing to do is delay the store, say, one more trip through the loop.
By partially unrolling the loop I permitted the Fortran compiler to do just that, delay
some stores for two or even three “trips”.

Analyzing the subroutine for ultimate efficiency I counted three multiplies, two
additions, five memory reads and two memory writes. So with the bidirectional mode
enabled, I could hope to attain one output result every three cycles, i.e. it was multiplier
limited. I recoded my assembly routine to achieve this goal and reran the test. The
Fortran still ran faster!

So the puzzle remains. I still have some ideas but I need pencil and paper, not the
Cray, to work them out.

CONCLUSIONS

Cyclic reduction can be used to significantly reduce finite-difference migration time
on a vector machine such as the Convex. However parallel reorganization of finite-
difference migration provides much superior performance and is still preferred whenever
memory limitations aren’t a problem.

Use of one of Caltech’s hypercubes let me try finite-difference migration on a paral-
lel machine. For a small test case I was able to realize much of the speed improvements
predicted in my earlier theoretical musings. For a larger case I didn’t realize them

because of programming shortcomings, not intrinsic limitations.

The Cray X-MP /48 did not fulfill my intended use as four parallel processors work-
ing together on (vector) cyclic reduction. As a vector processor finite-difference migra-
tion benchmarked at approximately the performance I would anticipate from comparison
with the Convex C-1. The Cray Fortran compiler did an excellent job at vectorizing my
migration program and produced code that ran consistently faster than my (supposedly)
optimized assembler equivalent.
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APPENDIX A

A 15 degree implicit migration using cyclic reduction.
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