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Three-pass 3-d migration on a hexagonal grid

Marta Jo Woodward

ABSTRACT

Two-pass 15-degree migration on a square grid is compared to three-pass 15-degree migration
on a hexagonal grid. The latter is found to be more accurate, more symmetrical and more efficient

than the former.

INTRODUCTION

Two papers appeared in SEP-38 comparing the advantages and disadvantages of 3-d seismic
data collection and one-pass migration on hexagonal and square grids (Woodward and Muir,
1984a; Woodward and Muir, 1984b). They showed that hexagonal grids sample regions circularly
bandlimited in k, and k, 13.4% more efficiently than square grids—allowing in-line midpoint
spacings % times longer than their square counterparts. They also demonstrated that hexagonal
grids permit representations of the 2-d Laplacian (/?) used in explicit 3-d migration that are
marginally both more accurate and more symmetrical than those corresponding to square grids.
Unfortunately, it was also found that the computational effort required to perform explicit 3-
d migration on a hexagonal grid is approximately 40% greater than on a square grid, due to
hexagonal Laplacians being larger than square Laplacians of comparable accuracy, and due to
their related requirement for smaller depth-steps (Woodward, 1984d).

Jakubowicz and Levin (1983) introduced a two-pass alternative to one-pass migration on a
square grid by showing that sequential migration in two orthogonal directions is equivalent to full

3-d wave equation migration in a homogeneous medium of velocity v:

kzl = w?- vzk,c2
k2, = kI — vk’
= w?-vlk,? - vik2 (1)

Using a generalized form of the Pythagorean theorem, Woodward and Muir (1984b; 1984c) ex-

tended this proof to three-pass migration—showing that sequential under-migration with a velocity
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FIG. 1. Square and hexagonal midpoint grids with comparable aliasing characteristics in the
spatial frequency domain. Line spacings for the two patterns are equivalent; in-line midpoint
intervals are 16% longer on the right than on the left.

%v in three directions on a hexagonal grid is also equivalent to full 3-d wave equation migration

in a homogeneous medium of velocity v:

Icfl = w?- %vzkgl
R
Bo= R - B2
= W= 3P (K, + KL+ KL). (2)

For the purpose of clarifying equations (1) and (2), this paper first provides examples of two
and three-pass Stolt migration worked on square and hexagonal grids. It then examines 15-degree
equivalents to equations (1) and (2), and evaluates two and three-pass 15-degree migrations as
approximations to full 3-d migration. Three-pass 15-degree migration is shown to be both more
accurate and more symmetrical than its two-pass counterpart. Finally, the computational costs
of two and three-pass 15-degree schemes are compared, and the latter is found to be more efficient

than the former.

THREE-PASS STOLT MIGRATION

Figure 1 shows square and hexagonal midpoint grids with comparable aliasing characteristics
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FIG. 2. Two and three-pass 15-degree migrations and two and three-pass Stolt migrations of a
synthetic data set consisting of two zero-phase, constant-velocity hyperboloids sampled according
to Figure 1. The trace spacings on the three-pass sections are 16% larger than on the two-pass
sections, reflecting the different midpoint spacings of their respective hexagonal and square mi-
gration grids. The clip values have been adjusted to equalize the maximum kicks on all the
plots.
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in the spatial frequency domain, designed for the collection of 3-d seismic data over a circular
region. Line spacings for the two patterns are equivalent; in-line midpoint intervals are % longer
on the right than on the left. Two-pass migration on the square grid corresponds to fully migrating
(with a velocity v) the 49 lines parallel to the z-axis, then resorting and fully migrating the 49
lines parallel to the y-axis. Three-pass migration on the hexagonal grid corresponds to under-
migrating (with a velocity \/gv) the 49 lines parallel to the z; axis, resorting and under-migrating
the 49 lines parallel to the z; axis, and then, finally, resorting and under-migrating the 49 lines
parallel to the z5 axis. The results of two-pass and three-pass Stolt migration of a synthetic data
set consisting of two zero-phase, constant-velocity hyperboloids sampled according to Figure 1
are shown in the lower half of Figure 2. Both display the 90-degree phase-shift expected for 3-d
migration. While they are visually and theoretically indistinguishable, it should be noted that

the hexagonal example required 50% more computational effort than the square example.

THREE PASS 15-DEGREE MIGRATION

Accuracy and symmetry: observations

Equations (1) and (2) strictly hold only for homogeneous media and complete, 90-degree
schemes such as the Stolt migrations of the preceding section. However, it has been shown that
they may also be applied with reasonable success to inhomogeneous media—where approximate
finite-difference schemes must be used (Gibson et al., 1983). 15-degree approximation equivalents
to equations (1) and (2) are given in the Appendix. Comparison of these approximations with
full accuracy 3-d equations permits calculation of relative phase errors for two-pass and three-
pass 15-degree migration. These errors are shown for 15°, 45° and 60° dips in Figure 3. They are
plotted as functions of grid azimuth—the angle measured between the first-pass (z or z1) axis and
the dip direction; the dashed lines correspond to two-pass migration, the solid lines to three-pass.
Examination of the graphs yields three conclusions. First, two and three-pass 15-degree migration
schemes both undermigrate 3-d seismic data—just as one-pass 15-degree migration undermigrates
2-d data. Second, three-pass is more symmetrical than two-pass migration, manifesting a smaller
variation in phase error over a longer repeat interval (180° as opposed to 45°). Third, three-pass
15-degree migration is almost always more accurate than its two-pass counterpart.

These differences may be explained by recognizing that two-pass and three-pass migration
differ in the apparent dips they present to the 15-degree operator. Since the 15-degree approxi-
mation to the scalar wave equation decreases in accuracy for high dips (especially for dips steeper
than 30°), the scheme presenting the lowest apparent dips is most accurate. Three-pass migration
is distinguished from two-pass migration in that each migration is a partial (or under) migration

with velocity \/—-gv. Consequently, for a given dip, the sine of the apparent dip perceived by
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FIG. 3. Percent phase errors for two-pass (dashed line) and three-pass (solid line) 15-degree, 3-d
migration—for 15°, 45° and 60° dips. Expressions for the phase errors appear in the Appendix.
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FIG. 4. Grid azimuth corresponding to minimum phase error as a function of dip for two (dashed
line) and three-pass (solid line) 15-degree migration.

the 15-degree operator is \/g (or 18%) smaller for three-pass than for two-pass migration-—and
the former will usually be more accurate than the latter. (This reasoning is similar to cascaded
migration arguments presented by Larner and Beasley, 1986.)

Three-pass migration will occasionally be less accurate than two-pass, because the preced-
ing argument is complicated by the issue of grid orientation. Figure 4 plots the grid azimuth
corresponding to minimum phase error as a function of dip for two and three-pass 15-degree
migration, dashed and solid lines assigned as above. The maximum apparent dip perceived by
two-pass migration goes through a pronounced minimum when its associated square computa-
tional grid is oriented at an angle of 45° to the dip direction—when the apparent dip is reduced
by a factor of cos(45°) (or 29%). (For steep dips, where first-pass dip-steepening must be taken
into account, the minimum is at slightly less than 45°.) Since three-pass hexagonal grids are more
symmetrical than two-pass square grids, grid rotation contributes little to three-pass apparent dip
reduction; one axis will always be within 30° of the maximum dip direction—corresponding to a
dip reduction factor of only cos(30°) (or 13%, for a total of 29%, including the under-migration
factor). Consequently, the two-pass method can be marginally more accurate for grid azimuths
in the vicinity of 45° or 135°. Figure 4 indicates that apparent dips for three-pass migration are
minimized by orienting the z;-axis parallel to the dip direction; this procedure minimizes dips in

the second and third-pass migrations, subsequent to first-pass steepening.
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Accuracy and symmetry: examples

While the superiority of three-pass to two-pass migration appears highly significant in Figure 3,
its superiority in practical applications is more subtle. Two examples are worked in this paper,
comparing two and three-pass migration for both symmetrical and asymmetrical reflectors in
homogeneous media. The first, symmetrical example appears in the top panels of Figure 2—
where the the results of two and three-pass migration of the hyperboloid synthetics described in
the Stolt migration section are exhibited. Although the two results are very similar, the three-pass
picture does display more undermigration artifacts—indicative of the fact that it is marginally
less successful at handling dips at most azimuths.

The second, asymmetrical example appears in Figures 5a and 5b. Here the synthetic data
set consisted of a planar reflector dipping at an angle of 45°. It was sampled over a circular
region similar to that shown in Figure 1—but sampled twice as densely. Two-pass and three-
pass migrations were performed twice each for several depth-steps Ar: once with the z and z
axes oriented parallel to the dip direction (Figure 5a); once with them oriented at 45° to the dip
direction (Figure 5b). (In both instances, the dipping reflector intersected the surface at the edge
of the circular sampling region.) Judgement of the panels on the steepness, truncation placement
and basal sharpness of their images, as well as on their overall level of artifacts, yields three
conclusions. First, as predicted by Figure 3, the superior symmetry of three-pass migration is
readily apparent: for equivalent Ar’s, the qualities of the three-pass 0° and 45°-azimuth panels
are more nearly identical than those of the same two-pass panels. Second, also as predicted by
Figure 3, three-pass migration is clearly more accurate than two-pass migration for 0°-azimuths:
the three-pass panels are superior to the two-pass panels not only for equivalent A7’s, but also
for At ratios of 2:1. Third, for the 45°-azimuth panels, where Figure 3 predicts the marginal
superiority of two-pass migration, the three-pass panels are still slightly better—as judged mainly
on the criteria of sharpness and artifact level. This result is discussed in the following section,

where the contrasting sensitivities of the two migration schemes to the depth-step parameter Ar

are explored.

Efficiency: observations

The amount of computational work required for multiple-pass 15-degree time migration is
equal to np - nz - n7—the number of passes times the number of traces in each pass times the
number of depth steps in each pass. Given that hexagonal, three-pass sampling grids need only
V3

7 as many traces as their square, two-pass counterparts, the ratio of work required for two-pass

and three-pass migrations becomes:

Wo 2,2 nn_ 4 7 (3)
Wrh 3 /3 nmm 33 nm’
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where n7; and nr, refer to the number of depth-steps required for square and hexagonal schemes,
respectively.

In their paper on cascaded migration, Larner and Beasley (op. cit.) note that the basic equation

used in 15-degree time migration is

vIATAL
6;6, P = (W) 8z P, (4)

where v is the velocity used in the migration, At is the time sampling interval, Az is the trace
spacing, Ar is the depth-step, 6, is the second difference operator in the z-direction, & and &,
are the first difference operators in the t and 7 directions, and P(z,7,t) is the wavefield. They
then observe that, for a given data set, the value of the parenthesized coefficient in this equation
determines the accuracy of the migration—thereby justifying the combination of large depth-steps
with small velocities in cascaded migration schemes. A similar argument can be used to justify
the use of larger (fewer) depth-steps in three-pass migration than in two-pass migration. Since
the migration velocity used in the former is \/g times that used in the latter, and since trace
spacings are 3§ times as large,

nts Aty va:z:i
viAa:?

for a given data set, three-pass migration may achieve finite-difference accuracy equivalent to that

nr, AT, ’ (5)

of two-pass migration with half as many depth-steps. Combination of this result with equation

(3) leads to the conclusion that

W,

— = 1.54; 6

Wh bl ( )
hexagonal three-pass migration requires only 65% as much computational effort as two-pass mi-
gration. (If the sampling efficiency of the hexagonal grid is neglected, three-pass migration can

be shown to be 30% more work than two-pass.)

Efficiency: examples

These conclusions are substantiated by Figures 5a and 5b, although the examples are com-
plicated by the phase-error contrasts. Where the phase error of three-pass migration is smaller
than that of two-pass migration (i.e., Figure 5a), three-pass migration remains superior to two-
pass migration for A7 ratios of 2:1. Where the phase error of three-pass migration is comparable
or larger than that of two-pass migration (i.e., Figure 5b), three-pass migration is superior to

two-pass migration for Ar ratios of 1:1, and only marginally inferior for ratios of 2:1.

CONCLUSION

Given cascaded migration—where 15-degree finite-difference migration achieves high accuracy

for steep dips at low cost through a series of large depth-step residual migrations—the superior
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symmetry and accuracy characteristics of three-pass 3-d migration become insignificant; with the
cascade method two-pass 3-d migrations may always be made as accurate and symmetric as their
three-pass equivalents (Larner and Beasley, op. cit.). Nevertheless, 3-d cascaded migration imple-
mented on a hexagonal grid will always be more efficient than cascaded migration implemented
on a square grid; because of the larger midpoint spacings and lower (\/—%_) migration velocity,

three-pass schemes can achieve superior results for the same computational effort.
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APPENDIX

The 15-degree approximation equivalents to equations (1) and (2) are

15k7, _ o vk
w 2w?
15[&:72.2 oy 02k122 B v'ﬂcg -
w 2w 9,2 (1 v kzz)
2w

p? cos? (8) p® cos? (6 + 90°)
- > -

(e ) (A1)

= 1
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(Jakubowicz and Levin, op. cit. ), and

2
15k7, - 1 vzklzz
w 3w
ﬁ = 1- 02k12 _ vzk%
w 3w? 3,2 (1 _ v2k]2>
3w?
sk, _ vihy? il B vk}
3 k
w w 3w? (]. - %4)—21> v2k2 v2k2
3w? 11— - 2
3w? v2k?
3w? (1 - —J2~>
3w
g prcos? ()  pPcos?(§+60°) p? cos? (6 + 120°)

, (A2)

2 2<1_p2c052!0[>

p* cos? (9) p? cos? (6 + 60°)

2 2
p“ cos” (4
2 (1- o5 0)

respectively. For both equations: # is the grid azimuth—the angle measured between the first-pass

(z or z;) axis and the dip direction; p? is the squared cosine of the dip—
2 __ v? k2o g2 = 2v? k2 4 k2 4 k2
P—F(z‘i‘ y)—m(1+ 3t 3)- (A3)

Comparison of equation (1) with equation (A1), and equation (2) with equation (A2), per-
mits calculation of the relative phase errors for two-pass and three-pass 15-degree migration—

(15kr, — kr,) /kr, and (15ks, — kr;) /kr,, respectively. They are plotted in Figure 3.
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