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Autofocusing of migrated data

Jos van Trier and Fabio Rocca

ABSTRACT

Seismic data, migrated with an incorrect velocity model, show residual diffraction hyperbolas
or smiles. We use a statistical estimation theory to determine residual velocities from these events

and show an example to illustrate the method.

INTRODUCTION

The observation that velocity information can be obtained from diffraction events has been
made by several authors (e.g. Mehta (1977), Harlan et al. (1984) and De Vries and Berkhout
(1984)). Their approach to focusing migrated data has been to calculate some focusing measure
(entropy) for a range of migration velocities and then to determine the correct velocity from this
sampled entropy function by either trial and error or optimization methods.

Here we present a method that directly gives an estimate of the residual velocity from the
migrated data, though the estimate is scaled by an unknown constant. Still, it can be used as a
direction in a search algorithm that will focus the migrated data automatically.

Migration is supposed to give an image of the reflectivities. The output of migration with an
incorrect velocity model, the unfocused image, can be treated as a convolution of the reflectivities
with a small wavelet. We try to estimate the residual velocity from this wavelet using statistical
estimation theory, where we approximate the conditional distribution of the data by a form that
is a linear function of the wavelet. Furthermore, we assume that the statistical properties of the

reflectivities can be modeled by a Gaussian mixture.

RESIDUAL VELOCITY ESTIMATION

In this section we will show that data, migrated with a wrong velocity, can be written as a
convolution of the reflectivities with a residual wavelet. The shape of the residual wavelet is deter-

mined by the residual velocity: a smile for overmigrated data, and a hyperbola for undermigrated
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data.

By considering the amplitude of the residual wavelet to be small compared to the unit op-
erator, we will be able to apply an estimation theory similar to the one described by Kostov
and Rocca (1986). The focusing of the migrated data is done in a iterative fashion: we find an
estimate for the residual velocity, update the velocity model and repeat the procedure.

We will derive the equations for a constant reference velocity. As the described residual mod-
eling is based on phase shift modeling, a depth variable background velocity is easily incorporated.
Even for a general velocity field the method will still work; it only needs to be put in a different
framework. For example, Rothman et al. (1985) implemented residual migration based on finite
difference and Kirchhoff methods.

In any case, the estimated residual velocity can be both space and depth variable.

Convolutional model for residual migration

Rocca and Salvador (1982) showed that small errors in the velocity model may be corrected by
applying a residual migration to previously migrated data, rather than remigrating the original
data with a corrected velocity field. Analogously, the image m(z, 7), that is obtained by migrating
data with some (wrong) migration velocity vas, can be constructed by residual modeling (the

transpose of residual migration) with residual velocity v,:

v2 = v? — vl = 20Av, (1)

where v is the “true” half velocity. In practice, we set ¥ equal to the known migration velocity
vap. Using phase shift modeling, we get for M(k;,w), the Fourier transform of the unfocused
image m(z,t = 7)L:

M(kz,w) = /exp(—-ikrr) R(kg,7) dr, (2)

2vAvk?2
k,-:wﬂl————v ;) z,
w

and R(kz,7) is the Fourier domain representation of the reflectivities r(z, ).

where:

To be able to apply first order statistical estimation theory, let us consider the following:

20Avk2

M(kz,w) = / exp(—iwr 1- o2 ) R(kz,7) dr (3)

'Residual modeling maps from the (z,7)-domain to a domain with the same dimensions: (z,7). To avoid
confusion in equation (2) we take ¢ (Fourier dual: w) as the pseudo-depth variable for the unfocused image, whereas
7 (dual: k) denotes pseudo-depth for the focused image. In consequent equations we drop this distinction and take
w to be the Fourier dual of 7.
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= [ exp(- %) exp(—iwr) R(ks,r) dr (4)

o~ / (1-— M) exp(—iwr) R(kg,t) dr. (5)

Note that the approximation to the dispersion relation in equation (4) is the same as in 15 degree
migration. The second approximation is a first order Taylor expansion of the exponential and is
only justified when the velocity perturbations are small. One of the later sections will describe in
detail the implications of this approximation.

Equation (5) is a spatial convolution over x:

Maw)= [ Frah . (- AR ) exp(iun) dr (6)
— / (5(2) + Av b(z,w,7)) * r(e,7) exp(—iwr) dr, (7

with:
b(z,w,7) = —ﬂ FT1(k2), (8)

where FT71(kZ), the inverse Fourier transform of kZ, is the second derivative wavelet (e.g.
(1,-2, 1)). We can now use (first order) statistical estimation theory to get an estimate of
the velocity anomaly Awv (see appendix).

We have chosen to express the model in terms of one unknown parameter Av. It is also possible
to leave the complete second derivative wavelet as an unknown. The estimation procedure then
gives the residual migration operator that “best” focuses the data and this approach can be

considered as an alternative to the one proposed by Dellinger and Mora (1988).

Estimation of residual velocity

In the appendix it is shown that the conditional mean estimate of the velocity anomaly is:
Z;(r) = Av? '7(m(x,1')) . / - (b(x,w,r) * m(:c,r)) exp(twr) dw, (9)

where 7 is the gradient function (see figure 1) and Av? the variance of Av. The dot product is

taken over the z-axis.

The estimation procedure thus consists of three steps.

1. The unfocused image m(z,7) is clipped at some amplitude by the gradient operator,
resulting in a section mgyq(z,7) = '7(m(:c,1')>. The clip value should be chosen such
that the residual wavelets are retained and the features that are uninteresting for the
velocity estimation (like flat beds) are deleted. The success of the method depends of

course on the separability of these two kinds of events (see also Harlan et al. (1984)).
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FIG. 1. The gradient function 7. We copy the figure from Godfrey (1979) (p. 39, figure 2.2d)
with a slight change: Godfrey’s figure displays  — (z), this figure represents only ~(z).

2. We apply the “differential” operator to the unfocused image, resulting in a section

mag(z,7):
mag (z,7) = / ~(b(z,w,7) * m(z, 7)) expliwr) do, (10)
or, in the Fourier domain:
Mg (g, 7) :/ 1.1—}(]::‘2;7-M(Icz,w) exp(twr) dw. (11)

3. For each r level, the dot product of mgqq(z,7) and myg(z,7) is taken over the z-
axis, resulting in an estimate for the velocity anomaly, ZZ(T), scaled by an unknown
Av?. We can also take the dot product in a moving window over the z-direction, thus

estimating a space variable ZZ(@-, 7).

As mentioned above, the estimated velocity perturbation is only known within a constant scale

factor. We therefore have to use the estimate as a direction in an iterative scheme to find the

final focused image.

Limits on residual velocity

The theory is based on the first order Taylor expansion of the model (see equation (5)). This
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FIG. 2. The maximum value of the residual velocity as a function of Az and 7, for fixed frequency
and a given “accuracy” constant o.

approximation poses restrictions on the residual velocity; for large residual velocities the argument
of the exponential in equation (4) no longer satisfies:

a2 1.2 S92
wikyT 9 VT
1
2w " ez b (12)

where we have substituted for k. its maximum value: -, With Az the sample interval in the
z-direction. If we want the approximation to be valid within a certain accuracy range, then the

left hand side of the above equation has to be smaller than some appropriate small constant «
(we include % in this constant):
ivir < (13)
.
2wAz?

Figure 2 shows the maximum value of v, as a function of Az and 7 for fixed frequency and a

given a. We note that this value decreases with increasing r and decreasing Az. This behavior can

be expected when we realize that the residual wavelet gets larger for increasing 7 and decreasing
Az and that the theory is based on the wavelet being small.

Figures 3a and 3b display the same function but now for fixed Az and two different frequency
values. a has been chosen such that the first order approximation is accurate within 10 % of the
exact case.

For Az = 0.01 km and 7 between 0 and 2 s, the values of the maximum residual velocities
range from about 0.02 to 0.1 km/s for a frequency of 10 Hz, and from about 0.05 to 0.2 km/s
for 60 Hz. These values seem to be small (especially when we consider Av and not v.: Av has

to be smaller than 5 and 20 m/s for 10 and 60 Hz, respectively (assuming & = 1 km/s)) but, as
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a) Frequency 10 Hz

C\Z'_
2
<
g
=
w ]
=
(] T T T T
5 1 1.5 2
T (s)
b) Frequency 60 Hz
C\l-_
)
<
g
=
w ]
=
O T T T T
5 1 1.5 2
7 (s)

FIG. 8. The maximum residual velocity corresponding to 10 % accuracy for Az = 0.01 km and
frequencies of 10 Hz (figure a) and 60 Hz (figure b).
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FIG. 4. unfocused images of an diffraction event; figure a shows an image that has almost been
focused (ve = 0.10 km/s); the spike in figure b is far from being focused (ve = 0.45 km/s). The
images have been plotted with the same plotting parameters.

we will see in the next section, even for larger velocity perturbations the estimation method still
gives valuable information. Also, since for higher frequencies a larger residual velocity is allowed,

we can high pass the data in the first iterations.

AN EXAMPLE

To illustrate the method, we generated two unfocused images of a spike function of amplitude 1,
one with a residual velocity within the 10 %-accuracy region described above, and another with
a much larger residual velocity (see figures 4a and 4b). In this example Az is .01 km, ¥ 1 km/s

and the high pass cutoff frequency is 10 Hz.

We then go through each of the three steps mentioned before: figure 5 shows the clipped
images Mg,,4(z,7) (clip is 0.2), figure 6 displays mgg(z,7) and in figure 7 the estimates of the
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FIG. 5. Step 1 of the estimation procedure: we apply the gradient operator to the images
of figure 4: the data are clipped above some level that we have set to 0.2 in this example.
Figure a sho;vs the small residual wavelet: v, = .10 km/s, figure b the large residual wavelet with
ve = .45 km/s.

velocity perturbations are presented.

We see that for v. = 0.1 km/s we get a sharp positive peak in the estimate around 7 = 0.2 s,
the pseudo-depth of the input spike, whereas for v, = .45 km/s the peak becomes more dispersed.
Also, the amplitudes of the estimates are weaker in the latter case.

To get one value for the velocity perturbation, we sum the estimates over the r-axis; we will
call this value “step” as it will hopefully tell us how to “walk” in our search algorithm.

We now examine the behavior of the step for a range of residual velocities (see figure 8a).
Figure 8b is a detailed picture of the estimate for residual velocities in the 10 %-accuracy region.
We see that for this region the estimate is linear with velocity perturbation as predicted by the
theory. Outside the region, the estimate gets smaller for larger velocity perturbations; there is

less correlation between mgqq(z,7) and mgyg (2, 7), because our first order approximation breaks
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FIG. 6. Step 2 of the estimation procedure: the differential operator is applied to the images.
Again, figure a displays v = .10 km/s, figure b v, = .45 km/s.
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FIG. 7. Step 3: we take the dot product over z of the sections in figures 5 and 6, resulting in
estimates of the velocity perturbation as a function of pseudo-depth for the two images of figure 4
(ve is 0.10 km/s in figure a, 0.45 km/s in figure b). The amplitudes of the estimates have been
normalized to 1.
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FIG. 8. Step as a function of the velocity perturbation (the difference between true and migration
velocity). Figure b displays the linear region around Av = 0 in detail. The clip value was 0.2.
The amplitude of the step is normalized to 1.
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Clips 0.2-0.3
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FIG. 9. Step function for clips 0.200, 0.225, 0.250, 0.275, and 0.300.

down. However, an important observation is that the sign of the estimate is still correct and this
makes it possible to use the method in an iterative scheme.

Finally, we test the influence of the clip on the estimate. Figure 9 displays the estimate for
several velocities and clips. In the linear region, the clip does not change the estimate much,
whereas in the nonlinear region there is more variation with the clip. Again we notice that the

sign of the estimate is correct for all clips (except for the very large velocity perturbations).
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CONCLUSION

The described method enables us to determine residual velocities, even for a larger range of
velocities than the one for which it originally was designed. The example we showed was useful as
an illustration of the estimation procedure. Now the method has to be applied to more realistic
cases than the one-spike model and it has to be incorporated in an optimization scheme that

focuses the image automatically.
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APPENDIX: CONDITIONAL MEAN

Kostov and Rocca (1986) describe a theory to estimate the wavelet a for the following convo-

lutional model:

y=(6+a) * z=z+a * z (A1)

We will follow the same line of reasoning as they do to derive a formula for the estimate of g,
but will only use first order approximations. Furthermore, for residual modeling the wavelet a is

determined by only one unknown Av and we have to deal with an imaging step:
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m(w) = / (§+Av b(w,r)) * r(r) exp(—iwr) dr.

= r(w)+ Av / b(w,r) * £(r) exp(—iwr) dr. (A2)

This is the same equation as equation (7), where we have written the z-dependence in vector

notation (e.g. m(w) = m(z,w)). Likewise, we can express r in terms of m (residual migration):

r(r) = / (ﬁ— Av é(w,T)) * m(w) exp(iwr) dw

= m(r) - Av / b(w,7) * m(w) exp(iwr) dw. (A3)

Equation (A3) can be derived by approximating the dispersion relation in the same way as for
residual modeling (equation (5)). To simplify equations, we substitute ¢ for Av and w; and w,

for the integrals in equations (A2) and (A3):

m

r+ qw;; (A4)

r

m — qu,. ‘ (A5)

Note that the first expression has w as pseudo-depth variable, whereas the second expression uses
7 for pseudo-depth. This distinction has to be kept in mind but is not relevant in the following
analysis: the wavelets under consideration depend on z; pseudo-depth is an independent variable.

The conditional mean estimate of q is:

7= / q Pm(q|m) dg, (A6)
where pp,(g|m) is the probability density function (pdf) of ¢, satisfying:

pa(alm) = P29) 2ol2), (A7)

To evaluate this expression, we first use the following theorem for py,(m):

p(m) = | pa(rmle) po(a) dg (48)

and then approximate pm(m|q) to first order in ¢ using (A5):

Pm(mlq) = pr(m) — ¢ pp(m) - w, (A9)
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We substitute expressions (A7)—(A9) in equation (A6):

 —E(m) - w,
g= pe(m) (A10)
= —¢? y(m) - w,, (Al1)

where we have used:

1= / pq(q) dg; (A12)

7= / q pe(q) dg = 0; (A13)
= / q* pe(q) dg; (A14)
R (429

The first order approximation of the pdf is only valid for small q_z; for very large values of the
variance we have to use a gain factor as in Kostov and Rocca (1986).

Godfrey (1979) derived an expression for the behavior of the gradient function (see figure 1)
in the case where the pdf for r is a Gaussian mixture. In our convolutional model r 1s the reflec-

tivity sequence and the use of a Gaussian mixture for the pdf of the reflectivities is justified by
Walden and Hosken (1985).

We now change back to our original notation:

Av(r) = mq(m(r)) . / —(_Ig(w,r)*m(r)) exp(iwr) dw. (A16)
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Researchers have already cast much darkness on
the subject, and if they continue their investiga-
tions, we shall soon know nothing at all about it.

MARK TWAIN.



