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Water bottom multiple deconvolution

Kamal Al-Yahya and Peter Mora

INTRODUCTION

Multiples from a hard flat sea floor can be suppressed in a deterministic manner
provided two parameters are know, namely the travel time through the water layer (filter
lag) and the reflectivity of the water bottom (filter coefficient). The filter lag can be
obtained by measuring the time between two consecutive water-bottom reflections while
the reflectivity can be measured by taking the relative amplitudes of these reflections.
Single measurements of this type are not very reliable so it is better to use an automated

procedure that can utilize the redundancy in the data set to obtain these parameters.

One way to approach the problem is to determine the optimal (in the least squares
sense) set of parameters in the two-dimensional space of filter lag and filter coefficient (see
Figure 1). One (very inefficient) way to achieve this is by using the Monte Carlo method
to search the entire space for the filter parameters that yield the best deconvolution (i.e.
least reverberation). The problem is greatly simplified if the data is gained to remove the
transmission and reflection losses so the filter coefficient can (at least approximately) be
ignored. Subsequently, a one dimensional search for the best filter lag can be performed
thereby reaching point A in Figure 2(a). The search is made easier by starting with an
approximate lag picked from the gather. This method does not give good results and

significant reverberations remain after the deconvolution.

However, the addition of an automated step to determine the best possible reflection

coeflicient removes almost all the remaining reverberations.
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FIG. 1. A representation of the problem as a search in a two-dimensional space; the
solution is point P. Scale is for illustration only and is not significant.

OUTLINE OF SCHEME

In this paper we present an efficient method for the automatic determination of the
filter coefficient by using an iterative least squares descent method. The descent method
is fast because the problem is close to being linear and so convergence is achieved in
two or three iterations. Prior to this step, the filter lag must be determined using the
technique outlined above. Specifically, the data is gained to equalize the strength of the
water bottom multiple reflections so a filter coefficient of about 1 may be used in some
preliminary deconvolutions. Several lags centered about the approximate reverberation
period picked from the data are used and the optimal value is chosen that minimizes the
energy in the deconvolved data (and hence the reverberations). We have reached point A
in Figure 2(a) at this stage.

Although it would be possible to stop here, it has been found that the deconvolution

is not optimal because of the inaccurate approximation that after gaining the data the
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filter coefficient is about 1. Therefore, the method we present here goes one step further
by fixing the lag and determining the optimal reflection coefficient stopping at point B in

Figure 2(b). Starting at a reflection coefficient of zero is not necessary.

THE DECONVOLUTION FILTER

The water-bottom is assumed to be flat and horizontal with reflection coefficient r.
The source and receivers are assumed to be located at the water surface which is assumed
to have a reflection coefficient of -1. The two-way travel time is m time units. The

deconvolution filter in the Z-domain for the receiver is then
GZ)=1+rZ2™ ,

Robinson and Treitel (1980). To remove reverberation at both the source and receiver, we

must use the square of this filter, since the sea bottom is assumed to be horizontal,
G(Z)=1+rZ™?=1+2rZ2™ + 22"
In the time domain, the input-output relation becomes

output(t) = input(t) + 2r = input(t — 1) + r? * input(t — 27)

DETERMINING THE REFLECTION COEFFICIENT

Least squares optimization requires the minimization of the sum of the squared error.
In the case of deconvolution for water-bottom multiples, we can consider the error to be

the deconvolved data:
en(z,t) = data(z,t) + 2rpdata(z,t — 1) + ridata(z,t — 27) (1)

where 7 is the two-way travel time to the water bottom. The reason this works is that our
water layer reverberation filter has energy that is greater than unity so the reverberations
are minimized when there is the least energy in the deconvolved data.

Our goal is to compute the error (the deconvolved data) e, 1 at the (n+1)-th iteration
from the error e, at the n-th iteration. Linearizing the problem means truncating the

Taylor series expansion after the first term:

Jde,,
€nt1 = €p + e (rn+1 - Tn) (2)
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FIG. 2. (a) Fixing the reflection coefficient at a value close to 1 and then searching
vertically till point A is reached. (b) Using the filter lag determined by A, a search for
the filter coeflicient is done, reaching point B. Scale is for illustration only and is not
significant.
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Actually, seismic data is a function of both z and ¢ but this can still be arranged into one
column vector by putting one trace on top of another and so on.

To solve for the least squares value of r, we minimize E,

oF,
T+l g (3)
Orp+1
where
Eni1 = e£+len+1 = Z Z (en+1(x’t))2 (4)
z t
Gain

If we gain the error (i.e. deconvolved data) by the function t7, then equation (1) can

be written as
en(z,t) = t7 [data(z,t) + 2r,data(z,t — 1) + ridata(z,t — 27)] (5)

The gain parameter v weights the errors. For example, if v were greater than zero, the
error would tend to be larger at later times so the least squares algorithm would tend to
pay more heed to decreasing error at the later times (i.e. removing reverberations at later
times).

From equations (3) and (4),

T
de,

=0 6
Orp41 O+l ( )

Substituting from equation (2) into equation (6), we get

deT

__n

(] 1 =0
ory, nt

del N Qe_n( ) =0
8?’n €n Brn n+1 n b ’

from which we can obtain this iterative equation for the reflection coefficient,

—1
. . del de, Beze
ntl = In ar,, or, or,

where all partial derivatives are obtained from equation (5).
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EXAMPLE

We demonstrate the proposed method with field data. Figure 3 shows a marine shot
gather showing clear water bottom multiples. The gather has NMO applied to flatten
reflections in order that the reverberation period be constant for the entire data set. The
lag between water-bottom reflections is about .12 sec. Figure 4 shows the square error
as a function of lag when the reflection coefficient is fixed at .8. The figure shows a
clear minimum at .128 sec, which we take as the filter lag. We are now at point A of
Figure 2(a). Figure 5 shows the reflection coefficient as a function of iteration using the
descent of equation (7), where the reflection coefficient converges to .34. We are now at
point B in Figure 2(b). The filter lag has been fixed to be .128 sec. The deconvolved gather
corresponding to the last iteration is shown in Figure 6, where most of the peg-legs have
disappeared. The solution corresponding to point A in Figure 2(a) is shown in Figure 7,
which is inferior to Figure 6 because the gain in the initial step did not compensate exactly

for the water bottom reflection coefficient.
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FICG. 3. Marine shot gather. NMO has been applied with constant water velocity to align
reflections.
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FIG. 4. Square error as a function of lag for the deconvolution of the data in Figure 3.
The data was first time-gained and a reflection coefficient of .8 was used.
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FIG. 5. Reflection coefficient as a function of iteration for the data in Figure 3. The filter
lag was determined from Figure 4 to be .128 sec. Notice the rapid rate of convergence.
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FIG. 6. The result of deconvolving the data in Figure 3 using a lag of .128 sec (from
Figure 4) and a reflection coefficient of .34 (from Figure 5).
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FIG. 7. The result of deconvolving the data in Figure 3 using a lag of .128 sec (from
Figure 4) and a reflection coefficient of .8 after gain to compensate for transmission and

reflection losses.
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CONCLUSIONS

The scheme we presented was successful in suppressing water bottom multiples. Its
cost is very small so its routine use is feasible. The only non-automatic portion of the
scheme is the picking step to determine the approximate reverberation period. This could
be easily automated if desired at the expense of some of the efficiency. As a by-product,

the algorithm estimates the reflection coefficient of the sea-floor which may possibly be

useful.
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