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ABSTRACT

Salt bodies provide complex imaging challenges because of their geometry and
reflective properties due to the (often) sharp contrast of wave speed between
salt and sediments. Level sets are a useful tool to define and refine discrete
boundaries of salt using an implicit surface to describe them. Furthermore, we
can represent the implicit surface using a sparse representation based on radial
basis functions (RBFs). Using linear operators to map from RBF parameter
space to wave speed space, we develop a new formulation of the Full Waveform
Inversion (FWI) objective function, and then take the second derivative to get a
formulation of its Hessian. We can then solve the corresponding Newton system
to find a search direction. The sparse representation offered by the RBF scheme
means that a truncated iterative inversion is intrinsically faster due to the large
reduction in model parameters that we need to solve for. We demonstrate the
efficacy of using the Gauss-Newton approximation of this Hessian, as well as
explore the limitations of using the full Hessian formulation for finding a search
direction.

INTRODUCTION

Previous work done by Kadu et al. (2016) demonstrated how radial basis functions can
be used to help define salt features using level sets. Further, there is a growing field
of literature describing the use of level sets as a means to track boundaries for shape
optimization schemes (Li et al. (2010), Lewis et al. (2012), Guo and Hoop (2013),
Santosa (1996), Osher and Sethian (1988), Burger (2003)), including in the domain
of seismic imaging. Our recent work explored the use of the Hessian of a full-grid
level set formulation (see Dahlke et al. (2017a)), showing promise as a means to find
search directions for a FWI-type work flow. This approach included the inversion of
a Newton system that uses a full Hessian formulation of the level set-FWI objective
function. For large problems like we find in typical 3D seismic imaging, the large
number of model parameters makes inverting this system prohibitively expensive.
We introduce a sparse parameterization of the level set problem, which allows us to
invert a Newton system that is based on roughly two-orders of magnitude fewer model
parameters than before. This speeds up the convergence of iterative methods like
conjugate gradient. In this work, we derive this formulation, and then demonstrate on
2D synthetic models using the Gauss-Newton Hessian approximation. After this, we
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demonstrate using the full Hessian and discuss the practical limitations and potential
benefits of that approach.

DERIVATION

Shape optimization

The first step of this derivation is to describe the model space that we are working
with. We will call our velocity model m, which we define as:

m(φi,j, bi,j) = H(φi,j)(csalt − bi,j) + bi,j, (1)

where H(◦) is the Heaviside function, m(φi,j, bi,j) is the velocity value, φi,j is the
implicit surface value, and bi,j is the background velocity value at 2D spatial position
(i, j). We generalize these parameters for the entire spatial domain (ignoring i, j),
and expand this definition with a Taylor series as:

m1 = m0 +
∂m

∂φ

∣∣∣
m0

4φ+
∂m

∂b

∣∣∣
m0

4b+ .... (2)

This approximation is only valid when the Taylor Series we describe converges with
the addition of increasingly higher order terms. For the Heaviside function, this is
not the case, since the function is not differentiable in original form. For this reason,
we must use a smoothed approximation of the Heaviside function, such as:

H(φ) ≈ 1

2
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π
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)

]
.

By truncating the series in equation 2 and ignoring higher order terms, we can create
a linear approximation to this smooth approximation for the perturbation of the
velocity model m with respect to φ and b:

4m ≈ ∂m(φo, bo)

∂φ
4φ+

∂m(φo, bo)

∂b
4b. (3)

This can be written as a matrix operation:

4m ≈
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

] [4φ
4b

]
4m ≈

[
∂m(φo,bo)
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∂b

]
4p,
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where we define operator D as:

D =
[
∂m(φo,bo)

∂φ
∂m(φo,bo)

∂b

]
=
[
δ(φo)(cs − b) 1−H(φo)

]
. (4)

This operator D ultimately scales and masks the parameter fields 4φ and 4b.
With this new approximation of the perturbation in our velocity model, the appli-
cation of our Born operator to our new model parameter space 4p = [4φ 4b]T is
given by:

4d ≈ BD4p.

Alternatively, we can find the update gradient for our model parameters by applying
the adjoint operation:

4p ≈ DTBT4d.

Similarly we can find the application of the Hessian to the search direction as:

DTHD4p ≈ −DTBT4d. (5)

In equation 5, we can substitute H with either the full or Gauss-Newton Hessian.
Previous work by Fichtner (2010) shows that the full Hessian of the FWI objective
function can be constructed by summing a WEMVA component with the Gauss-
Newton component of the Hessian. It is this formulation of the full Hessian application
that we use. The method we propose solves equation 5 for 4p using a conjugate
gradient algorithm.

Sparsifying with Radial Basis Functions

The thesis of the work done in Kadu et al. (2016) is to replace a regular grid
parametrization of the implicit surface φ with a surface described as an aggregate
of many RBFs, resulting in a much sparser model. We build upon this idea by clus-
tering the spatial locations of the radial basis functions around the areas we expect
to see updating occur. This allows us to use far fewer RBF parameters to attain
a higher resolution around the salt boundary than we would if we used the regular
gridding described in Kadu et al. (2016):

φ(λ; ε, r) =
Nλ∑
i

λi exp−(εr)2 (6)

where λ is the new model parameter, r is the radial distance from the RBF center
i, and ε controls the sharpness of the RBF taper (constant). Further, we limit the
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support of each RBF to improve the efficiency of computing the implicit surface φ
built from the aggregated RBFs. These details and more are described in Dahlke
et al. (2017b). In regards to this work however, our operator D must be modified to
account for this additional linear transformation:

D =
[
∂m(φo,bo)

∂φ
∂φ
∂λ

∂m(φo,bo)
∂b

]
=
[
δ(φo)(cs − b) exp−(εr)2 1−H(φo).

]
(7)

Further, our model space has also changed to be:

4p =

[
4λ
4b

]
.

APPLICATION TO THE SIGSBEE CANYON MODEL

(a) (b)

Figure 1: The full model (a) used for propagation (acquisition geometry from (0,0)
to (0,1.75). A close up of the canyon area (b). [ER]

Single canyon perturbation

For the first application example, we select a portion of the upper Sigsbee canyon
model (Figure 1b). We perturb the left hand side of the canyon (Figure 2) so that we
can get secondary scattering against the opposite canyon wall (shown in Figure 3). It
is this secondary scattering that the full Hessian is expected to be able to recover, as
opposed to the Gauss-Newton Hessian approximation, which relies on only first-order
Born scattering. We use this model because it should be able to offer a comparison
between the two Hessian formulations of reasonable significance. For this model we
use an acquisition geometry of 38 shots evenly spaced, with 230 receivers. We used a
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Ricker wavelet with a central frequency of 15 Hz. For this case as well as the double
perturbation case, we assume that 4b = 0, and so invert for a model defined as
4p = 4λ.

Figure 2: The single canyon perturbation of the Sigsbee model. [ER]

Double canyon perturbation

For the second application example, we use the same true model based on the upper
Sigsbee salt (Figure 1b). In this case, we perturb both the left and right hand sides of
the canyon (Figure 7). This will offer a further complexity to the secondary scattering
of the model (shown in Figure 8). The same acquisition geometry and wavelet were
used for this example as the first model.
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Figure 3: The data generated from the center shot on the true model (left). The
center shot residual between the true data and the data generated from an initial
guess that had a single canyon side perturbation (right). [CR]
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Figure 4: The inversion result after using the Gauss-Newton approximation of the
Hessian on the single perturbation model. [CR]
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Figure 5: The inversion result after using the full Hessian on the single perturbation
model. [CR]

(a) (b)

Figure 6: The objective functions from the inversions of the single canyon perturba-
tion model using the Gauss-Newton Hessian (a), and the full Hessian (b). [CR]
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Figure 7: The double canyon perturbation of the Sigsbee model. [ER]
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Figure 8: The data generated from the center shot on the true model (left). The
center shot residual between the true data and the data generated from an initial
guess that had a double canyon side perturbation (right). [CR]
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Figure 9: The inversion result after using the Gauss-Newton approximation of the
Hessian on the double perturbation model. [CR]
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Figure 10: The inversion result after using the full Hessian on the double perturbation
model. [CR]

(a) (b)

Figure 11: The objective functions from the inversions of the double canyon pertur-
bation model using the Gauss-Newton Hessian (a), and the full Hessian (b). [CR]
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DISCUSSION ON THE FULL HESSIAN

Benefits

The Gauss-Newton Hessian approximation is based only on the first-order scattering
that the Born operator captures. This is limiting in cases where secondary scattering
is more prominent, such as in salt canyons. The advantage of using the full Hessian is
that its application incorporates a WEMVA term that accounts for this second order
scattering. When we look at the results from the double canyon perturbation model
and compare the Gauss-Newton (Figure 10) and the full Hessian results (Figure 9), we
can see a slight improvement in the focusing of the energy in the full Hessian results.
This improved search direction should lead to better convergence in the non-linear
inversion scheme as well.

Limitations

However, we find that this improvement is not found for all models, since the Hessian
is model dependent. The single perturbation example results are much different.
While the Gauss-Newton Hessian system inverts quite nicely (Figures 4 and 6a), the
full Hessian inversion explodes part way through (Figures 5 and 6b). Because the
full Hessian operator is not inherently positive semi-definite like the Gauss-Newton
Hessian is, it is possible that the operator has negative eigenvalues, which can lead
to instability during inversion. This was the case in the single canyon perturbation
example.

There are a number of ways this can be alleviated. One standard method is to
use the Levenberg-Marquardt method Weisstein (2017) of regularizing the operator
with a scaled identity matrix. However, in order to use this method properly, the
correct scaling of the identity matrix must be used. If too large of a scaling is used,
the operator becomes more like the identity matrix, negating the potential benefit of
inverting the full Hessian system to begin with. If the scaling is too small, the system
will still be ill-conditioned. The ideal scaling is slightly more than the value of the
most negative eigenvalue of the operator. This makes the operator positive definite.
Since our model (and as a result, our Hessian) is very large, it is impractical to store
or factorize the Hessian matrix to determine the most negative eigenvalue through
traditional non-iterative linear algebra methods.

Power Iteration Method

The most practical way to find the best scaling is by using the power iteration method
outlined in Larson (2012) to find the maximum absolute-valued eigenvalue (positive
in the case shown for Figure 12). After this has been found, we shift the operator
by the negative of this value to find a new maximum absolute-valued eigenvalue.
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Figure 12: The power iteration curve showing the maximum absolute value approxi-
mated eigenvalues of the full Hessian operator used on the single canyon perturbation
model. [CR]
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The difference between this value and the first one derived is the magnitude of the
most negative eigenvalue. We experimented with this method, but found the results
of this effort to be minimal, and at notable computational cost. Figure 12 shows
that in practice at least 30 iterations (and so ∼ 30 forward full Hessian operator
applications) were necessary for each of the two power iteration searches. Once these
searches were complete and a proper shift was found, we found that the results of
using this Levenberg-Marquardt shift were almost imperceptible from the Gauss-
Newton results. Furthermore, since the Hessian operator is model-dependent (and
so changes with each outer loop iteration of FWI), we would need to perform these
power iteration steps each time we were to invert the Newton system.

CONCLUSIONS

We successfully invert the Newton system for an objective function that is based
on a sparse radial basis function parametrization. We find that the full Hessian
formulation for the radial-basis function level sets provides marginal improvement
over the Gauss-Newton Hessian for certain models where it inverts stably. However,
this improvement is not necessarily worth the effort of ensuring a stable inversion
result, which can be very costly for methods like Leavenburg-Marquadt combined
with power iterations.
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