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ABSTRACT

In this work we show how radial basis functions can be used to sparsely represent
the implicit surface used to represent salt bodies. We show that this methodology
is effective even when the model parameter reduction is roughly 2% of the original
model size. This is important to making shape optimization effective for 3D
velocity models. When the Hessian of a modified FWI objective function is
used for shape optimization, we must invert the Newton system for the search
direction. When using iterative methods like conjugate gradient for this, the
reduction in parameters improves the speed and stability of this inversion.

INTRODUCTION

Previously, Kadu et al. (2016) demonstrated how radial basis functions (RBFs) can
be used to help define salt features using level sets. In their work, they chose to
use a regular gridding for the RBF centers. This has the advantage of allowing the
same resolution of updates to all areas of the salt model. Assuming that a reasonably
good initial salt pick is chosen, we can further assume that any changes to this salt
boundary will occur within its vicinity. Following this, we prefer to concentrate our
resolution (and subsequently the RBF centers) around the areas where we actually
expect updating to occur, i.e, the edges of the initial salt body picks. For this reason,
we apply an approach that builds a probability distribution around the edges of the
initial salt picks, and then randomly assigns RBF centers based on this probability
distribution. This builds a ‘cloud’ of RBF centers that is densest where we expect
the updates to occur and gives us enhanced resolution in these areas using far fewer
parameters than a regular grid approach would require to achieve the same resolution.
In this paper we first show how we create this probability distribution. Then we
describe the linearization that we used to perform the non-linear inversion, and last
we show results that demonstrate the efficacy of the method on the Cardamom salt
model.

INVERSION

To use a sparse representation of our implicit surface as the model in an FWI type
workflow, we first have to begin with some initial model. We find this by starting
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with some initial binary guess of salt/no-salt in the spatial field such as the salt
overlay shown Figure 1. Next we use a non-linear inversion workflow to find the RBF
parameters that best fit that 2D spatial salt mapping. We define the function that
maps from the RBF parameter (λ) space to the implicit surface (φ) space as:

φ(λ; ε, r) =
Nλ∑
i

λi exp−(εr)2 , (1)

where r is the radial distance from the RBF center and ε is a constant that influences
the taper of the Gaussian kernel. With this formulation of the implicit surface, we
can then map from the implicit surface (φ) to a velocity field (m) using the non-linear
Heaviside function (H):

m(λ) = H(φ(λ)). (2)

We can approximate the Heaviside as a differentiable function Ĥ, which allows us
to take its derivative as the smooth Dirac-delta like term δ̂, and thus find a gradient
for equation 2:

4m = δ̂(φ(λ))
Nλ∑
i

exp−(εr)24λ. (3)

With this, we can code up linear forward and adjoint operators that allow us to
transform between perturbations in the velocity and RBF parameters. Using this
with the non-linear forward (equation 2), we can use a non-linear solver to invert for
the correct RBF parameters (λ). I used a python-based, out-of-core solver developed
by Ettore Biondi and Guillaume Barnier to perform the inversion itself (Biondi and
Barnier (2017)).

APPLICATION

In order to preserve efficiency of the algorithm, we keep the RBF parameter ε constant,
and thus use the same Gaussian function for each RBF kernel. This means we only
solve for the weights (λ) applied to each of these kernels. Because this RBF kernel
is static, we can calculate it beforehand. Since the value of the RBF diminishes with
radial distance, we only use a small section of the full RBF that is in a region of
relatively close radius to the center. Far-radius regions of the RBF are negligibly
small, and so the computational cost of storing and using a larger kernel is a fruitless
exercise.
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Parameter choices

Because we choose to define our RBF kernel before inversion, we need to find param-
eter values for ε, for the size of the kernel footprint, and for the density of the RBF
centers themselves (see Figure 3 showing probability mapping and Figure 4 showing
the resulting RBF centers). These must be determined manually beforehand, and
the interplay between the parameters must be analyzed. For example, if we choose
a ε that is too large, the RBF will taper off rapidly. If a regular gridding of RBF
centers is used, it is relatively easy to calculate a ε value that will allow for full spa-
tial coverage via overlapping RBF functions. However, since we choose a randomized
centering for each RBF, we need to check to see that our ε value is small enough
that the summation of all RBF functions has complete coverage over the spatial do-
main we are working with. However, if it’s too small, then we smooth out the radial
basis functions, and thus decrease the resolution of the implicit surface we create.
Alternatively, we could keep our ε value and RBF centers the same, and increase the
footprint of the kernel itself. We show the impact of varying ε with a fixed kernel
footprint and RBF centers in Figures 2a and 2b. In Figure 2a where we use ε = 2.25,
we get RBF kernels that taper off quickly, leaving little to no overlap in areas where
the RBF are more sparsely centered. However, if we decrease ε to 0.25, we reduce this
tapering and get full coverage in the area of interest (Figure 2b). This does reduce the
precision slightly around the boundaries themselves since the smoother RBF mean we
have less resolution in our aggregated implicit surface. Overall, the parameters that
tune the minimum probability of a center occurring, ε, and kernel footprint size must
be balanced to achieve both full coverage, low number of parameters (RBF centers),
and resolution of the resulting aggregate surface. This tuning can be done relatively
quickly by doing simple inversions on small test sections of the full model.

Cardamom salt model

The Cardamom field is in the Gulf of Mexico, and lies about 360 km south-west of
New Orleans, Louisiana in approximately 830 m of water. The reservoir itself sits
beneath thick layers of salt in rock more than 6 km below the sea floor. We choose a
section of the velocity model provided to us by Shell that has a notable salt protrusion
in it as an example.

Beginning with a salt model from the Cardamom field dataset (Figure 1), we are
able to build a probability density map that favors putting RBF centers near the
original picked boundary (Figure 3). From this, we are able to generate random RBF
positions (Figure 4). Using these RBF centers, we then perform a conjugate gradient
inversion to find the proper weighting of the RBF kernels in order to best fit our
starting model. The inversion converges relatively quickly (Figure 5), and produces
a result that is relatively close to the desired matching model. Figure 2b shows that
the matching model and the resulting inverted model generated from sparse RBF
parameters are quite similar.
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Figure 1: Overlay of salt model used by Shell and the corresponding RTM image.
[ER]
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(a)

(b)

Figure 2: Differences between original salt model and the resulting model produced
by the radial basis function representation. (a) shows fitted salt model using ε = 2.25
value, while (b) shows fitted salt model using ε = 0.25 value. Both cases used 98%
fewer model parameters than the original full-grid scheme. Background velocity is
2.5 km/s and salt velocity is 4.5 km/s. [ER]
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Figure 3: The probability distribution that was used to randomly position the radial
basis function centers. [ER]
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Figure 4: Center points for radial basis functions used to construct the implicit sur-
face. [ER]
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Figure 5: Objective function from the non-linear inversion used to find the RBF
parameters. [ER]
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CONCLUSIONS

In this paper we showed that radial basis functions can be used to significantly reduce
the number of parameters necessary to represent a 2D salt model. For the Cardamom
example we achieve 98% reduction in model parameters while still closely matching
the original boundary described in the fully-gridded space. The benefit of using
random locations for RBF centers is that we can achieve a higher resolution implicit
surface than if we were to use a regular gridded model for the same number of model
parameters. However, we need to take the time to choose our parameters like ε
carefully in order to maintain full coverage, high model reduction, and final surface
resolution. In future work, I hope to show how shape optimization can incorporate
this approach on a larger 3D cube of the same Cardamom velocity model for the
purposes of model refinement according to the FWI objective function.
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